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A B S T R A C T

Hydrologic models such as the Storm Water Management Model (SWMM) and the Hydrologic Simulation
Program-Fortran (HSPF) are widely used to evaluate the impacts of urban development on watersheds and
receiving waters. We compare the ability of these two models at simulating streamflow, peak flow, and baseflow
from an urban watershed. The most sensitive hydrologic parameters for HSPF were related to groundwater; for
SWMM, it was imperviousness. Both models simulated streamflow adequately; however, HSPF simulated
baseflow better than SWMM, while, SWMM simulated peak flow better than HSPF. Global Sensitivity Analysis
showed that variability of streamflow for SWMM was higher than that of HSPF, while variability of baseflow for
HSPF was greater than that of SWMM. Further, analysis of extreme storm events indicated that the runoff
coefficient for SWMM was slightly greater than HSPF for recurrence intervals of 1, 2, 5, and 10-yr.; the opposite
was the case for recurrence intervals greater than 10 yrs.

1. Introduction

Urbanization alters watershed hydrology by increasing im-
perviousness and channelizing or piping natural drainageways (Hester
and Bauman, 2013; Li et al., 2013; Liu et al., 2015). These changes
reduce infiltration, increase runoff volume, accelerate the time to runoff
peak (lag time), and reduce baseflow to streams (Chen et al., 2017;
Lacher et al., 2019; Locatelli et al., 2017; Rosburg et al., 2017). In-
creasing runoff volume results in higher streambank and channel ero-
sion (Whitney et al., 2015; Yousefi et al., 2017). Increases in peak
runoff and decreasing lag time increases flooding (Roodsari and
Chandler, 2017; Zope et al., 2016), damaging public or private prop-
erty. Urbanization also leads to higher sediment and nutrient loads
delivered to downstream water bodies. causing eutrophication and
degrading water quality, threatening aquatic ecosystems (Daghighi,
2017; Liu et al., 2018; Luo et al., 2018; Stoner and Arrington, 2017). A
variety of stormwater control measures (SCMs) also known as best
management practices (BMPs) have been developed for mitigating
urban impacts. Historically, management of urban runoff meant miti-
gating peaks using storage; this practice has given way to a more hol-
istic focus on the restoration of the natural hydroperiod; known as low

impact development (LID) or green stormwater infrastructure (GSI).
SCMs that assist in these goals tend to focus on infiltration (Golden and
Hoghooghi, 2017; Liu et al., 2018; Lucas and Sample, 2015).

Watershed models are used to: (1) simulate hydrology and water
quality in runoff, streams, and water bodies; (2) evaluate the impacts of
urban development; and (3) investigate effectiveness of watershed re-
storation strategies (Borah et al., 2019; Niazi et al., 2017). While nu-
merous watershed models exist, limited information is available to
guide in their selection. Two commonly used watershed models include
the U.S. Environmental Protection Agency's (USEPA) Storm Water
Management Model (SWMM) (USEPA, 2018), and the Hydrologic Si-
mulation Program-Fortran (HSPF) (USEPA, 2014). SWMM is a dy-
namic/physically-based hydrologic and hydraulic model which is used
to simulate runoff quantity and quality during discrete events and
continuous periods (Huber and Dickinson, 1988; James et al., 2010;
Rossman, 2010). SWMM is often used in urban areas because it is
capable of simulating conveyance systems. HSPF is a comprehensive
process-based watershed model that simulates watershed hydrology
and water quality (Bicknell et al., 2001; Linsley et al., 1975). Both
SWMM and HSPF were developed by the USEPA. HSPF has been ap-
plied across large, regional watersheds, such as the Chesapeake Bay

https://doi.org/10.1016/j.envsoft.2019.05.008
Received 25 January 2019; Received in revised form 28 March 2019; Accepted 10 May 2019

∗ Corresponding author. Hampton Roads Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, 1444 Diamond Springs
Rd, Virginia Beach, VA, 23455, USA.
E-mail address: dsample@vt.edu (D.J. Sample).

Environmental Modelling and Software 118 (2019) 211–225

Available online 16 May 2019
1364-8152/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2019.05.008
https://doi.org/10.1016/j.envsoft.2019.05.008
mailto:dsample@vt.edu
https://doi.org/10.1016/j.envsoft.2019.05.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2019.05.008&domain=pdf


watershed, a 166,000 km2 watershed (USEPA, 2010). The HSPF-based
Chesapeake Bay watershed model discretizes subwatersheds based
upon HUC-12 (hydrologic unit code) watershed delineations and geo-
political considerations, such as City, County, and State boundaries
(Shenk et al., 2012). Due to the complexity inherent in urban storm
drainage networks and their “flashy” runoff, SWMM models tend to be
used at smaller scales to capture this response (Niazi et al., 2017).

Recent (< 10 years) published research based upon use of SWMM
or HSPF that used at least two statistical methods for evaluating model
performance were compiled in Table 1. Based on the references pro-
vided in Table 1, SWMM has been applied to watershed ranging in size
from 2 ha to 40,000 km2, however, it has primarily been used within
smaller urban watersheds (< 2 km2). SWMM has specific functionality
for simulation of SCMs and LID, incorporating a variety of physical
processes such as storage routing and infiltration. On the other side,
HSPF has also been applied across a wide range of larger watersheds
(3–70,000 km2). Although HSPF has been applied to urban watersheds,
it has several limitations; HSPF does not directly simulate conveyance
systems, nor does it directly simulate SCMs. HSPF models SCMs by
shifting some of the watershed area's land use from urban to un-
developed and changing the F-tables, as these govern stream dimen-
sions in the HSPF model (Dudula and Randhir, 2016; Mohamoud et al.,
2010; U.S.EPA, 2014). The lack of explicit SCM representation is a key
weakness of HSPF (Mohamoud et al., 2010). HSPF is typically based
upon readily available spatial data and must be calibrated to mon-
itoring data. In contrast, SWMM depends upon physically based para-
meters that are collected or derived from spatial data gathered at
smaller scales.

A comparative assessment of HSPF and SWMM in simulating hydrology
of watersheds has been conducted only in a few studies; both were con-
ducted in forested, not urban watersheds Lee et al. (2010) compared
SWMM output with average streamflow from a large watershed during
seven events. The authors indicated that both models performed ade-
quately; however, HSPF simulated hourly streamflow better than SWMM.
Tsai et al. (2017) applied SWMM and HSPF to a highly pervious, forested
watershed. The authors indicated that HSPF matched observed streamflow
better than SWMM. This may have been due to the highly permeable soil of
the watershed which likely created a strong baseflow response. A key ap-
plication of HSPF is the simulation of hydrology and water quality of the
Chesapeake Bay watershed (USEPA, 2010). This is directly the result of
HSPF's simplicity, which allows HSPF to execute simulations of this large
watershed faster. This computational advantage is evident in execution of
large watershed models for long times. SWMM's advantages are its ability
to simulate “flashy” urban watersheds and assess SCM performance. As
both models are widely used in urban areas, understanding the similarities
and differences between them is critical, yet a comprehensive comparison
has not been done.

The objective of this paper was to address this research need by
comparing the capabilities of HSPF and SWMM as applied to a case
study urban watershed. HSPF and SWMM were each assessed in terms
of the (1) most sensitive hydrologic parameters in the watershed, (2)
simulation of daily and monthly streamflows in comparison with ob-
served data, (3) simulation of peak flows, baseflows and their respective
durations, and (4) predicted runoff coefficients during storm events
with set return periods. These results were then used to compare the
subcomponents of the long-term watershed hydrograph. Achieving a
better understanding of the similarities and differences of SWMM and
HSPF will help relate information from each model to the other, which
will assist in meeting water quality goals at the regional scale.

2. Materials and methods

2.1. Site description

Stroubles Creek, located within Montgomery County, Virginia, lies
within the Valley and Ridge physiographic province of Virginia.

Stroubles Creek is a tributary to the New River, which is tributary to the
Kanawha River, and part of the Mississippi River basin. An urbanized,
14.8-km2 headwater portion of the Stroubles Creek watershed was se-
lected for this study (Fig. 1). This subwatershed includes much of
downtown Blacksburg and the campus of Virginia Polytechnic Institute
and State University (Virginia Tech). This watershed was selected be-
cause: 1) its headwaters are predominately (73.8%) urbanized, and 2)
long-term monitoring data are available. The Virginia Tech Stream,
Research, Education, and Management (StREAM) Lab (StREAM Lab,
2009) continuously measures groundwater levels, streamflows, and
records precipitation and other climatological data within the Stroubles
Creek watershed. Land cover is 73.8% urban (with a total im-
perviousness of 32%), 21% agricultural, 4% forested, and 1.2% water
body (Multi-Resolution Land Use Consortium, 2011) (Fig. 1). The
dominant Hydrologic Soil Group (HSG) of the headwaters is category C
as classified by the Natural Resource Conservation Service (NRCS,
2007, 1999a), while downstream consists mainly of silt loam and loam
soils, which are category B (Mostaghimi et al., 2003). The average
elevation of the watershed is 670m above sea level. Mean annual
precipitation is 1030mm (Hofmeister et al., 2015; Liao et al., 2015).

2.2. Data collection

Storm sewer, street, parcel boundary, and surface elevation geo-
graphic information system (GIS) data were provided by the Town of
Blacksburg (Town of Blacksburg, 2015) and Virginia Tech; separate
datasets were merged. Soil information was obtained from the Soil
Survey Geographic Database (SSURGO) of the Natural Resources Con-
servation Service, with scales ranging from 1:12,000 to 1:64,000
(NRCS, 1999b). The monitoring station measures stream stage every
15min using a pressure transducer (CS451, Campbell Scientific Inc.,
Logan, UT, USA), with a water level resolution of 0.0035% FS (Full
Scale/Full Span, the difference between the lowest and highest mea-
sured point) and a CR1000 datalogger (Campbell Scientific Inc., U.S).
Stage was converted to discharge using a rating curve computed
through the historical monitoring of stage-flow. Precipitation was re-
corded at 15-min intervals at the StREAM Lab metrological station
using a tipping bucket rain gages (TR-525USW, Texas Electronics, Inc.,
Dallas, TX,± 1%). The StREAM Lab weather station measured air
temperature every 30min at the approximately 300m downstream of
the Stroubles Creek monitoring station. StREAM Lab and the meteor-
ological station are located at the watershed outlet. The depth to sur-
ficial groundwater was measured every 10min by two piezometers
installed in the floodplain adjacent to StREAM Lab using two CS451
water level loggers (Campbell Scientific, U.S). Groundwater table ele-
vation was quantified using geological maps of Geology and Mineral
Resources Division of Commonwealth of Virginia (Appendix A), and
data from the StREAM Lab pre-installed floodplain piezometers.

2.3. Model initialization

Land cover data was initially used to initialize the models in a
process described by Ketabchy (2018). The principal input parameters
used in development of the HSPF and SWMMmodels were land use, soil
properties, stream characteristics, and time series of precipitation and
temperature. A total of 43 subwatersheds were delineated within the
Stroubles Creek watershed. The watershed was delineated through
ArcGIS 10.5 (Ketabchy et al., 2018), correcting the delineation for
urban features (i.e. topography, slope, elevation, land use, etc.) where
necessary. The differences and similarities of each process feature and
main input/output variables for HSPF and SWMM are summarized in
Table 2.

SWMM uses a simplified Darcy's law to simulate groundwater flows
and interaction of surface water and groundwater of an aquifer through
a number of parameters: bottom elevation of aquifer, groundwater-
surface water interaction parameters (A1, A2, B1, and B2, which are
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listed in Table 3), depth of unsaturated upper zone and lower saturated
zone, aquifer porosity, and saturated hydraulic conductivity (Rossman,
2010). These parameters control flow from the aquifer into the stream
(and vice versa) and compute groundwater flow as a function of
groundwater and surface water levels. Green-Ampt (GA) infiltration
was applied for the infiltration module of SWMM, primarily because the
watershed was semi-urbanized and the physical basis of GA parameters
such as suction head, hydraulic conductivity, and initial moisture def-
icit values are available through the Soil Survey Geographic Database
(SSURGO). The dynamic wave (DW) algorithm was selected for hy-
draulic routing within SWMM, because this method can simulate non-
uniform and unsteady state flow conditions accurately. The longest flow
paths of each subcatchment were used to calculate its hydraulic width
(HW), a required SWMM parameter. Excess rainfall that exceeds de-
pression storage is routed from each subcatchment through a nonlinear
reservoir algorithm (Macro et al., 2019; Palla and Gnecco, 2015; Xing
et al., 2016); each subcatchment is split into pervious and impervious
portions, and runoff is directed to a user-defined outlet node or is
routed across pervious areas. The Manning's roughness coefficient for
pervious and impervious area is used to compute normal flow across a
plane (the plane being the subcatchment); these eventually flow into
either conveyance piping, ditches, and/or streams, through which flow
is calculated by use of the Manning's equation or through culvert for-
mulas which depend upon upstream and downstream conditions.

HSPF includes three principle modules: PERLND (pervious land),
IMPLND (impervious land segments), and RCHRES (routing through
reaches). Processes in receiving streams can be simulated using the
RCHRES (reach and reservoir) module of HSPF. IMPLND module gen-
erates surface runoff, whereas the PERLND module analyzes all three
major processes including surface runoff, interflow, and groundwater.
All processes related to soil infiltration, soil moisture, groundwater,
baseflow separation, etc., are analyzed in these modules, enabling HSPF
to predict the hydrology and water quality of watersheds (Berndt et al.,
2016; Bicknell et al., 2001; Mohamoud and Prieto, 2012; Xu et al.,
2007). The PWATER and IWATER sections in HSPF control the water

budget allocations between surface flow, interflow, baseflow, storage,
interception, detention and evaporation (ET). PWAT-PARM3 is one
section of PWATER, which has two parameters of DEEPFR and AG-
WETP for simulating groundwater recharge. Philips equation (a phy-
sically-based method that uses an hourly time step), Chezy-Manning's
equation, and kinematic wave (KW) were applied within HSPF for si-
mulating infiltration, streamflow, and hydraulic routing, respectively
(Bicknell et al., 2001). Within HSPF, the parameters LZSN and UZSN
(Table 3) that control lower and upper zone storage are used to simu-
late water outflow from streams (Bicknell et al., 2001). The INFLT
parameter is an index associated with the Philips infiltration method for
quantifying soil infiltration capacity. There are three parameters that
control groundwater and baseflow in HSPF; these are KVARY, AGWRC,
and DEEPER which are functions of baseflow recession variation and
the interactions between groundwater and surface water. BASETP is a
parameter that represents the ET of riparian vegetation; when riparian
vegetation is present, its value starts with 0.03 (Singh et al., 2005).
INTFW and IRC are interflow parameters, which are a function of soil,
topography and land use (Bicknell et al., 2001).

The major components of the water balance within the Stroubles
Creek watershed include: precipitation, total runoff (sum of overland
flow, interflow and baseflow), total actual ET (sum of interception ET,
aquifer upper zone ET, aquifer lower zone ET, baseflow ET, and active
groundwater ET), and deep groundwater recharge. Each of the afore-
mentioned water balance components have corresponding parameters
in SWMM and HSPF (Table 3).

2.4. Baseflow separation

Direct runoff during storm events is the sum of overland flow and
interflow, while baseflow consists of groundwater discharge from the
saturated zone of an underlying aquifer directly to streams (Lott and
Stewart, 2013; Miller et al., 2016; Rumsey et al., 2015). Baseflow af-
fects aquatic habitats during dry periods and low-intensity storm events
during periods of high groundwater levels (McCargo and Peterson,

Fig. 1. Land cover types of Stroubles Creek watershed, with gaging and meteorological station locations.
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2010). There are several methods to determine and separate baseflow
from streamflow, which are grouped into three general categories:
graphical, analytical, and mass balance methods (Lott and Stewart,
2016). Baseflow separation partitions a stream hydrograph into base-
flow and runoff. The most widely used methods of baseflow separation
are analytical (Lott and Stewart, 2016). Eckhardt (2008) developed a
two parameters equation through numerical analysis for baseflow se-
paration, which is calculated by Eq. (1).

=
+ ×

b
BFI ab a BFI y

aBFI
(1 ) (1 )

1k
k k

max

max 1

(1)

where a is the groundwater recession constant, y is the total stream-
flow, b is the baseflow, k is the time step, and BFImax is maximum
baseflow index. There are three values for maximum baseflow index
(BFImax) parameter including 0.80 for perennial streams with porous
aquifers, 0.50 for ephemeral streams with porous aquifers, and 0.25 for
perennial streams with hard rock aquifers. In this study, a hydrograph
analysis tool (Kyoung et al., 2005) was used for baseflow separation,
which uses the Eckhardt method (Eckhardt, 2008). The aforementioned
method is able to separate baseflow more accurately than other nu-
merical methods, since it utilizes two parameter filters (Eckhardt, 2008;
Neff et al., 2005). Since the current stream study is perennial with
porous aquifers underneath, a BFImax of 0.80 was used.

2.5. Analysis of storm events

The behavior of each model during storms events with a set return
period was assessed. Each calibrated model was used to simulate

streamflow for the 1, 2, 5, 10, 25, 50, and 100-year 24-hr precipitation
frequency (PF) estimates at the outlet of the Stroubles Creek watershed;
the PF estimates were produced by National Oceanic and Atmospheric
Administration (NOAA) ATLAS 14 with 90% confidence intervals
(NOAA, 2016) using the partial duration time-series type. Natural Re-
sources Conservation Service (NRCS) Type II storm distribution was
used to develop time series of 24-hr precipitation events (NRCS, 2015).
Groundwater discharge was assumed to be negligible during large
storm events. The runoff volume simulated at the outlet of the wa-
tershed (by both models) during the 24-hr precipitation was normalized
to runoff depth through dividing by the connected impervious area of
the watershed. Further, runoff coefficients were calculated as the runoff
depth divided by precipitation depth, as, essentially all streamflow was
runoff during the event.

2.6. Sensitivity analysis

Sensitivity analysis (SA) is process of the adjusting inputs of a model
and calculating the rate of change in model results. SA techniques are
grouped into local and global methods (Javaheri et al., 2018). Local SA
methods evaluate the sensitivity of parameters around one local point.
The value of one particular input parameter was changed while other
parameters were held constant during the simulation; hence, the sen-
sitivity of streamflow as the main output of the models to input para-
meters can be represented by the sensitivity coefficient (Eq. (2)) (James
et al., 1982).

Table 2
Selected attributes of the HSPF and SWMM.

Feature HSPF (Bicknell et al., 2001) SWMM (Rossman, 2010)

Weather data Precipitation, air temperature, solar radiation, cloud cover, wind, dew point,
potential evapotranspiration

Precipitation, air temperature, wind speed, evaporation

Flow calibration parameters 20-25 parameters typically use for flow calibration 5-6 parameters typically use for flow calibration
Infiltration Infiltration is calculated using Philip's equation SWMM can use Horton or Green-Ampt or Curve number for

calculating infiltration,
Water routing Storage routing or kinematic wave method Steady flow, Kinematic wave, or dynamic wave
Channel geometry User-defined User-defined
Shallow aquifer Yes Yes
Deep aquifer Yes Yes
LID control No Yes
Urban conveyance system No Yes

Table 3
Selected parameters of HSPF and SWMM based on literature and field review, to assess the sensitivity analysis.

Parameter Unit Definition Function of Range

HSPF
LZSN mm Lower zone nominal soil moisture storage Soils, Climate 2.54–381
INFILT mm/hr. Index to soil infiltration capacity Soils, Land use 0.028–25
KVARY 1/mm Variable groundwater recession flow Baseflow recession 0–2540
AGWRC 1/day Groundwater recession rate Baseflow recession 0.001–0.999
DEEPFR – Fraction of inactive groundwater Geology, Groundwater recharge 0–1
BASETP – Baseflow evapotranspiration Riparian Vegetation 0–1
UZSN mm Upper zone Nominal Soil moisture storage Surface soil conditions, land use 0.254–254
IRC 1/day Interflow recession parameter Soils, topography, land use 0.01–0.99
INTFW Interflow inflow parameter soils, topography, land use 1–10
SWMM
HW m Hydraulic Width Longest flow path ±10% of each subwatershed
IMR – Impervious Manning roughness Soil type, Land use 0.01–0.03
PMR – Pervious Manning roughness Soil type, Land use 0.02–0.45
IDS mm Impervious depression storage Pavement, Land use 0.3–2.3
PDS mm Pervious depression storage Land cover 2.5–5.1
A1 – Groundwater flow coefficient Discharge, Aquifer 0.0001–0.01
B1 – Groundwater flow exponent Discharge, Aquifer 0.0001–1
A2 – Surface water flow coefficient Aquifer 0.0001–0.01
B2 – Surface water flow exponent Aquifer 0.0001–1
CND mm/day Conductivity Soil type ±20% of initial values
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where Sc is sensitivity coefficient; P is the input parameter and Y is the
predicted output; Pmax and Pmin are the maximum and minimum ranges
of the initial default value; and Y1 and Y2 are the corresponding output
values. The most sensitive model parameters in watershed hydrology
have higher values of Sc. In addition, Global sensitivity analysis (GSA)
techniques evaluate the sensitivity of parameters around the whole
parameter space (Dobler and Pappenberger, 2013; Javaheri et al.,
2018). The sensitivity analysis identified several key parameters that
had a substantial impact on simulation results. The sensitive parameters
have the potential to significantly influence SWMM and HSPF simula-
tion results. In applying GSA to the case study, the calibrated value of
each model's input parameter was used as the baseline value. Each key
model parameter value was varied one at a time, with simulations run
for plus and minus 10% of the published range in the parameter value
(Table 2). This produced a total spread of 20% in the parameter value,
which was assumed to provide a reasonable estimate of inputs. The two
simulations produced for the modification of each input parameter
provided upper and lower bounds of the simulation results. These limits
can be interpreted as error limits of simulation results. This approach is
often applied to address the performance evaluation of best manage-
ment practices (BMPs) and hydrologic models (Janke et al., 2013; Park
et al., 2011).

2.7. Calibration and validation

HSPF and SWMM models represent hydrologic and hydraulic fea-
tures of a watershed using fixed and process-related parameters
(Castanedo et al., 2006). Fixed parameters represent the hydraulic
features of drainage networks, while physical properties represent
drainage basins properties, such as length, slope, width, depth and
roughness of a watershed and areas covered by various soil types and
land covers. A flow chart describing the process of developing the HSPF
and SWMM models in this study is shown in Fig. 2. Process-related
parameters cannot normally be measured directly or cannot be calcu-
lated through GIS information; these include soil moisture storage,
groundwater discharge into stream, ET, etc. (Bicknell et al., 2001;
Castanedo et al., 2006). These parameters were adjusted manually
during the calibration process between January 1, 2013 and December

30, 2013 for each model using hourly streamflow obtaining from
StREAM Lab. There were 22 storm events during calibration period.
Validation, which consists of running the models with the calibrated
parameters without adjustment, was conducted for the period between
January 1, 2009 and December 31, 2012, with 61 storm events. The
purpose of model validation is to assess if the calibrated models can
simulate streamflow behavior for events outside of the calibration
period.

The goodness of fit criteria (for both calibration and validation
periods) were investigated using a group of statistical methods in-
cluding: coefficient of determination (R2) (Gebremariam et al., 2014;
Nasr et al., 2007; Seong et al., 2015), Nash-Sutcliffe Efficiency (NSE)
(Nash and Sutcliffe, 1970) and Percent bias (PBIAS) (Gupta et al.,
1999). According to Duda et al. (2012) and Moriasi et al. (2015),
multiple statistics should be used rather than a single criterion. A model
performance rating system, which compared the simulated versus ob-
served datasets qualitatively, was developed to assess model perfor-
mance (Table 4) (Bennett et al., 2013; Ketabchy et al., 2019; Moriasi
et al., 2015; Nayeb Yazdi et al., 2019a). If the statistical parameters
showed good or satisfactory agreement (Table 4), the model calibration
was considered complete; otherwise, the model calibration parameters
were adjusted further. The calibration process stops, when R2 and NSE
are greater than 0.6 and 0.5, respectively, and PBIAS is lower than
0.25% (Fig. 3).

3. Results

3.1. Sensitivity analysis

The results of the local sensitivity analysis for selected input para-
meters are presented in Table 5. The most sensitive parameters in the
HSPF model were groundwater parameters (DEEPFR, AGWRC), fol-
lowed by INFILT, LZSN parameters, which are functions of soil and land
use. The most sensitive parameters of the SWMM model was im-
perviousness (Sc= 0.38), following by impervious depression storage
(Sc= 0.11), and subwatershed hydraulic width (Sc= 0.03). These re-
sults are similar to previous studies (Ali and Bruen, 2016; Seong et al.,
2015; Tsai et al., 2017; Xing et al., 2016). Compared to HSPF model, the
groundwater parameters within SWMM including the groundwater flow
coefficient, groundwater flow exponent, surface water flow exponent,
and surface water flow coefficient did not substantially affect SWMM
results.

3.2. Global sensitivity analysis results

The baseline values of model outputs i.e. average streamflow,
average baseflow, and associated variation in modeled outputs are
shown in Table 6. GSA was conducted on the most sensitive parameters
in HSPF and SWMM, with the upper and lower bounds serving as the
extreme endpoints of simulation outputs. During GSA, variability of
average streamflow for SWMM was higher than that of HSPF, while
variability of average baseflow for HSPF was significantly greater than
that of SWMM. The most sensitive parameters of the HSPF model were
attributed to groundwater discharge, thus, altering those parameters
had direct a significant effect on baseflow. This likely explains why
HSPF-simulated baseflow had a larger variability during simulation
than similar outputs from the corresponding SWMM model. The sen-
sitive parameters of SWMM were primarily attributed to impervious-
ness and infiltration, which have a direct effect on runoff and/stream-
flow (Table 6).

3.3. Comparison of models without calibration

As a baseline for our study, the HSPF and SWMM models were in-
itially run for the entire period of record, without calibration to assess
the relative abilities of each model to match the observed data. ItFig. 2. The flow chart of the application of HSPF-PEST model.
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should not be construed that the authors are recommending use of the
models without calibration. Our supposition is that SWMM would
perform better than HSPF without calibration for the aforementioned
reasons. Parameter values for both models were left as estimated from
external data sources or model defaults. NSE, R2, and PBIAS for SWMM
was 0.52, 0.58, and −22%, and for HSPF was 0.38, 0.47, and −0.42%,
respectively. The results indicated that, without calibration, SWMM
simulated streamflow far better than HSPF, earning an “acceptable” vs
“poor” according to the metrics by Moriasi et al. (2015). This is due to
the finer spatial scale of the inputs to SWMM, which are based more on
the externally sourced data such as GIS and the physics of the hydro-
logical processes which control the catchment response, while HSPF is a
process-based model that relies on many parameters which can only be
determined through calibration. Thus, HSPF is not useful without ca-
libration; whereas SWMM without calibration, while diminished
somewhat, may still provide useful information. Thus, HSPF is better
for watersheds with monitoring data but only limited physical in-
formation, the opposite is the case for SWMM.

3.4. Calibrated input parameters

The calibrated value ranges of input parameters for HSPF and
SWMM models are presented in Table 7. The HSPF calibrated input
parameters for soil and land use (LZSN, INFILT) were categorized for
forest, agricultural, and urban land covers.

Table 4
Performance assessment of watershed modeling.a

Unsatisfactory Satisfactory Good Very good Statistics

R2≤0.60 0.60≤R2 < 0.75 0.75≤R2 < 0.90 0.90≤R2 < 1.00 R2

NSE≤0.50 0.50≤NSE<0.65 0.65≤NSE<0.75 0.75≤NSE<1.00 NSE
BBIAS ≤±25 ±15≤BBIAS < ±25 ±10≤BBIAS < ±15 BBIAS < ±10 BBIAS

a (Duda et al., 2012; Moriasi et al., 2007; Seong et al., 2015; Xu et al., 2007).

Fig. 3. Diagram of model calibration steps.

Table 5
Ranking of the parameters according to the sensitivities of models output
streamflow to them.

Level of sensitivity Parameter Sensitivity coefficient
(Absolute value)

HSPF
High

↓
Low

DEEPFR 0.2100
AGWRC 0.0860
INFILT 0.0790
LZSN 0.0710
BASETP 0.0250
UZSN 0.0091
IRC 0.0028
INTFW 0.0027
KVARY 0.0005

SWMM
High

↓
Low

Imperviousness 0.3800
Impervious depression
storage

0.1100

Hydraulic width 0.0300
Pervious Manning's
roughness

0.0080

Conductivity 0.0070

Table 6
Global sensitivity analysis of HSPF and SWMM output simulation results.

Parameter Average streamflow (m3/s) Average baseflow (m3/s)

HSPF
Nominal 0.173 0.102
Variation of outputs 0.129 (−25%), 0.181

(+5%)
0.071 (−30%), 0.106
(+4%)

SWMM
Nominal 0.184 0.088
Variation of outputs 0.129 (−30%), 0.216

(+17)
0.79 (−10%), 0.093
(+5%)

Table 7
Selected parameters of HSPF and SWMM for calibration.

Parameter Unit Calibrated value/value range

HSPF
LZSNa mm 381
LZSNb mm 304
LZSNc mm 254
INFILTa mm/hr. 8.350
INFILTb mm/hr. 7.050
INFILTc mm/hr. 5.710
KVARY 1/mm 2.540
AGWRC 1/day 0.990
DEEPFR 0.300
BASETP 0.030
UZSN mm 50.800
IRC 1/day 0.900
INTFW 5
SWMM
Hydraulic Width m 72–1160
Impervious Manning roughness 0.008–0.014
Pervious Manning roughness 0.140–0.218
Imperviousness % 7.000–68.670
Conductivity mm/hr. 0.050–34.340

a Forest land.
b Agricultural land.
c Urban land.
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3.5. Comparison of models for average streamflow simulation

Goodness-of-fit results for calibration and validation periods are
provided in Table 8. The statistical analysis results showed good
agreement between the simulated and observed streamflow. The ob-
served and simulated hydrographs of SWMM and HSPF for calibration

and validation periods are shown in Fig. 4. During the calibration and
validation periods, SWMM showed slightly better agreement between
simulated and observed streamflow than HSPF, based on the statistical
values of NSE, R2, and PBIAS. The positive values of PBIAS for models
during validation period indicates the propensity of the models to un-
derestimate streamflow. Since visual comparison of the models results
using Fig. 4b was hard to see, two months (i.e. December 2009, and
May 2011) were separated for better visualization in a narrower data
range (Fig. 4c and d).

Goodness-of-fit was also assessed by plotting the observed vs. si-
mulated values of streamflow in calibration and validation periods as
shown in Fig. 5. SWMM calibration replicates many of the storm event
peaks reasonably well. The slope of the regression line for the HSPF
calibration was less than 1.0 (Fig. 5a), while that of for SWMM cali-
bration period was close to 1.0 (Fig. 5b). Some of the errors are likely
due to the inability of the SWMM and HSPF models to capture
streamflow peaks for some of the events (Fig. 5a and b). The slope of
regression line for validation periods of SWMM and HSPF was ap-
proximately 0.7, indicating highly relative magnitude of the residuals
to standardized residuals (residuals equal to 0.0). SWMM generally
overestimated high magnitude flood events (Fig. 5d), while there was
no certain pattern in simulating high magnitude flood events through
HSPF (Fig. 5c).

Table 8
Goodness-of-fit test results for assessing the reliability of calibration and vali-
dation results of HSPF and SWMM model for streamflow.

Parameters Calibration Validation Model Performance Ratinga

HSPF
NSE 0.66 0.51 Good/Satisfactory
R2 0.70 0.64 Satisfactory/Satisfactory
PBIAS −9.60% 23.40% Good/Satisfactory
SWMM
NSE 0.69 0.59 Good/Satisfactory
R2 0.76 0.74 Satisfactory/Satisfactory
PBIAS −0.26% 18.20% Good/Satisfactory

a First one represents performance of calibration period and second one in-
dicates that of validation period.

Fig. 4. Comparison of hourly observed and simulated streamflow by HSPF and SWMM for calibration and validation periods (a) Calibration period for 2013 (b)
Validation period for 2009–2011 (c) Observed and simulated data for December 2009 (d) Observed and simulated data for May 2011.
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The residual time series of daily streamflow versus time and pre-
cipitation is provided in Fig. 6. The HSPF streamflow simulation
average error during wet periods (days with at least 0.25 cm pre-
cipitation) and dry periods were 0.002 and −0.067m3/s, respectively;
while those of for SWMM streamflow simulation were 0.067 and
−0.070m3/s, respectively. The aforementioned analysis indicates re-
latively better performance of both models in wet period than dry
periods (in terms of averaged-error); HSPF appeared to be a better
predictor of streamflow in wet periods rather than SWMM. During high
magnitude storm events (days with at least 2 cm precipitation), SWMM

generally over-estimated the streamflow, while there was no specific
pattern for HSPF simulation error.

Flow duration curves of simulated streamflow by HSPF and SWMM
and observed streamflow are shown in Fig. 7. Models simulated
streamflow close to observed streamflow during high flows (between 0
and 10% flow exceedance Q10). HSPF simulated streamflow between
10% and 90% of flow exceedance were slightly beneath observed
streamflow, while SWMM over-predicted streamflow during low flow.
Overall, based on a visual look, the HSPF simulation matched better in
terms of flow exceedance pattern with observed streamflow compared

Fig. 5. Scatter plots of observed and simulated streamflow along the 1:1 red line: (a) Calibration for HSPF; (b) Calibration for SWMM; (c) Validation for HSPF; (d)
Validation for SWMM.

Fig. 6. Comparison of residual error (simulated−observed) for daily streamflow simulation by HSPF and SWMM models (a) Between 2009 and 2012 (b) Between
May-2009 to Jun-2009 (c) Between February-2011 to March-2011.

M. Nayeb Yazdi, et al. Environmental Modelling and Software 118 (2019) 211–225

219



to the SWMM simulation (Fig. 7). The top 10% of streamflow in mag-
nitude (according to Fig. 7) were selected as peak flows to evaluate the
capability of HSPF and SWMM in peak flow simulation (there was 81
days of high streamflow for observed dataset). The corresponding
PBIAS values of SWMM and HSPF models for peak flow were −0.098
and 0.120, respectively, indicating that SWMM was better at reprodu-
cing observed peak flows. The average errors (simulated-observed) of
peak flows (7.1% for SWMM and −8.1% for HSPF) confirmed the
PBIAS statistical analysis results. The PBIAS values, average percent
errors of models, and Fig. 6 represent the overestimation and under-
estimation of peak flows by SWMM, and HSPF, respectively.

3.6. Comparison of models for monthly streamflow simulation

The average monthly streamflow (representing streamflow season-
ally variation) indicated that HSPF and SWMM models achieve better
agreement with observed streamflow during winter months (Jan and
Feb), rather than summer months (May, Jun, Jul, and Aug) (Fig. 8). The

SWMM averaged-percent differences of all months resulted in −15%,
while that of for HSPF was −22%, indicating SWMM is a better pre-
dictor of seasonally streamflow variation. The percentage difference
between the SWMM and HSPF monthly simulated streamflow and the
observed monthly streamflow ranged from 6% to 39%, and from 3% to
48%, respectively, which can be classified as not good results for
models when PBIAS is higher than 25% (Al-Abed and Al-Sharif, 2008).
SWMM performed better than HSPF in summer months, while HSPF
simulation matched relatively better with observed averaged-monthly
streamflow in winter than SWMM. Generally, both models under-esti-
mated the averaged-monthly streamflow between January 2009 and
December 2013 (Fig. 8). The simulation of average monthly streamflow
can be beneficial for assessing impact of projected climate and land-use
changes.

3.7. Comparison of models for baseflow simulation

The baseflow was plotted as (1) total baseflow and (2) baseflow for
dry periods (DPs, or the periods in which precipitation and direct runoff
are zero, and groundwater discharge is the only source of streamflow)
(Fig. 9). The observed DPs baseflows between 2009 and 2011 was 317
days, while that for SWMM and HSPF simulations were 693, and 199
days, respectively (Fig. 9b); it indicates better performance of HSPF in
coverage of the number of dry days period. The PBIAS values of SWMM
model for total baseflow and DPs baseflow were 0.4, and 0.61, re-
spectively, while those of for HSPF model were 0.31 and, −0.53, re-
spectively, indicating better performance of HSPF model in capturing
observed total baseflow and DPs baseflow. As SWMM and HSPF models
were not calibrated through observed baseflow, the aforementioned
PBIAS calculations and the respective discussion were only based on
baseflow calculation using the Eckhardt (2008) method and the cali-
brated average streamflow. HSPF captured the observed baseflow pat-
tern better than SWMM model (Fig. 9a and b); in contrast, SWMM
followed a relatively constant baseflow pattern throughout the DPs
(Fig. 9b). Our results are similar to previous study indicating that
SWMM has a limitation concerning baseflow simulation during dry
periods, particularly during winter months (Liu et al., 2013).

3.8. Comparison of model response to standard storm events

HSPF and SWMM models were compared during set return period
events by running each using standard NRCS 24-h storms. The

Fig. 7. Comparison of flow duration curves of simulated streamflow by HSPF and SWMM and observed streamflow.

Fig. 8. Radar plot of monthly average of observed and simulated streamflow.

M. Nayeb Yazdi, et al. Environmental Modelling and Software 118 (2019) 211–225

220



Blacksburg, Virginia, 1-yr recurrence precipitation is 55mm (2.2 in)
(NOAA, 2016). During the monitoring period, an event (07-July, 2013)
was identified and separated and are shown in Fig .10a. During this
event, NSE, R2, and PBIAS between observed and simulated data for
SWMM were 0.51, 0.58, and %33, and for HSPF were 0.45, 0.52, and
20%, respectively. Since, the models were calibrated continuously,
these results for that event can be can be considered to be acceptable
(Moriasi et al., 2015). The simulated hydrograph for 1-yr recurrence
interval are presented in Fig. 10b. Results indicated that for extreme
storm events SWMM simulated peak flows greater than HSPF, while
HSPF simulated higher baseflow than SWMM. SWMM tended to pro-
duce more runoff than HSPF for simulated storms with recurrence

interval equal or less than 10-yr (Fig. 11). Although the peak flows of
SWMM and HSPF 24-hr. storm distribution for the 100-yr. recurrence
interval were somewhat similar, a steeper receding limb was evident in
the SWMM results compared to HSPF, this accounted for the difference
in runoff volume.

4. Discussion

Statistical analysis indicated that both HSPF and SWMM models
simulated streamflow adequately. However, the positive values of
PBIAS for HSPF and SWMM indicated that both models had a pro-
pensity to underestimate streamflow. In addition, the performance of

Fig. 9. Comparison of observed, HSPF simulation, and SWMM simulation for total baseflow, and baseflow during dry periods (the periods without precipitation and
direct runoff): (a) Total baseflow; (b) baseflow during dry periods.

Fig. 10. Comparison of HSPF and SWMM simulation during storm events (a) actual event in 07-July, 2013 (b) artificial 1-yr recurrence interval.
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both models for simulating streamflow during wet periods (days with at
least 0.25 cm precipitation) was relatively better than dry periods. It
may have been stemmed from the capability of the respective Philips
and GA models, which were used for estimating infiltration rate in
HSPF and SWMM, respectively. This is because, during storm events,
the Philips and GA models estimate infiltration rate relatively better
than during dry periods (Chahinian et al., 2005; Wilson, 2017).

During high magnitude storm events (days with at least 2 cm pre-
cipitation), SWMM generally over-estimated the streamflow, while
there was no specific pattern for HSPF simulation error. HSPF appeared
to be a relatively better predictor of streamflow in wet periods rather
than SWMM. This may stem from the relative performance of the GA
and Philips models, as the Philips infiltration model represented wet
periods closer to reality than GA did (Wilson, 2017). In terms of si-
mulating streamflow seasonally, SWMM performed better than HSPF in
summer months, while HSPF simulated streamflow better than SWMM
in winter.

Generally, the Philip model estimated higher infiltration rates
compared to GA (Turner, 2006; Wilson, 2017); this difference could
explain the previously mentioned better performance of HSPF in cap-
turing total baseflow and DPs baseflow in comparison to SWMM. Fur-
thermore, HSFP and SWMM use KW and DWmethods for runoff/stream
routing, respectively. Previous studies indicated that the DW method is
more appropriate for obtaining the reference discharge and can capture
high flows better than KW (Moramarco et al., 2008; Soentoro, 1991);
this may explain why peak flows were better represented by SWMM
than HSPF. Overall, the performance difference between HSPF and
SWMM in simulating streamflow may be due to the methods were
employed for simulating infiltration rate and water routing. These
methods resulted in SWMM simulating streamflow better than HSPF
within the case study urban watershed. In addition, in the absence of
available monitoring data within a watershed, SWMM likely provides
better results.

5. Conclusion

Models developed using HSPF and SWMM were used to simulate

streamflow for a case study urban watershed, the Stroubles Creek wa-
tershed, in Blacksburg, Virginia. Sensitivity analysis was applied only
on process-related parameters. Based on sensitivity analysis, the most
sensitive hydrologic parameters within HSPF were groundwater para-
meters i.e. DEEPFR and AGWRC, while for SWMM, it was the percen-
tage of imperviousness. GSA indicated that variation for simulating
baseflow-averaged for HSPF was greater than SWMM, while for simu-
lating streamflow, the variability of SWMM outputs was greater than
HSPF. SWMM performed better than HSPF sans calibration, due to the
inclusion of more detailed watershed topology and SCMs. Analysis of
the residual time series of daily streamflow (simulated-observed) in-
dicated that both models performed better during wet rather than dry
periods. The comparison results of models for dry periods indicated that
HSPF could simulate the total baseflow and DPs baseflow better than
SWMM, while the opposite was the case for peak flows. Analysis of
extreme storm events was also conducted. The runoff coefficient for
SWMMwas generally greater than HSPF for recurrence intervals of 1, 2,
5, and 10-yr, and the opposite was true for recurrence intervals greater
than 10 years. The results of this study can assist urban watershed
planners in translating their results from small scale urban watershed
models where SCMs are implemented to larger, regional scale models
where compliance is assessed. It can also guide in the selection of the
most appropriate model for their urban watershed.
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Appendix A. The geologic map of the Stroubles Creek watershed

The geologic map of the Stroubles Creek Watershed (georeferenced and digitized as a hard copy from the Geology and Mineral Resources Division
of Commonwealth of Virginia, 1985) is displayed in Fig. A1. Below are the descriptions concerning characteristics of each geologic type of the
watershed.

Td (Talus deposits; the area beneath the ponds of the watershed): Unconsolidated, unsorted boulder fields composed of 0.3–1.8m thick angular
boulders of quartzite, siliceous sandstone and quartzes conglomerate. This detritus has been derived from nearby state of Mississippian, Silurian and
Devonian age. Thickness: 0–9.2m.

Ce (Elbrook Formation): The uppermost part of the formation is characterized by interbedded sandy, commonly crossbed, fine-grain dolomite

Fig. 11. Predicted runoff depth, and runoff coefficients through SWMM and HSPF modeling tools for the case study watershed.
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containing thin (1–10 cm) lenses of fine to medium-grained sandstone and 0.3–1.2m thick ribbon-banded limestone dolomite.
Cr (Rome Formation; the area mostly at the eastern portion of the watershed): Consists of interbedded mottled, maroon and green phylittic

mudstone, fine-grained sandstone and siltstone, and dark-gray, fine-grained dolomite.
Ccr (Copper Ridge Formation; the area upstream of the watershed): inter-bedded medium-gray, fine to medium-grained locally grained, massive

dolomite, supper siliceous oolite and quartzose sandstone. Total thickness is about 366m.

Fig. A.1The geologic map of the Stroubles Creek Watershed.
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