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Abstract: Vegetation heights derived from drone laser scanning (DLS), and structure from motion
(SfM) photogrammetry at the Virginia Tech StREAM Lab were utilized to determine hydraulic
roughness (Manning’s roughness coefficients). We determined hydraulic roughness at three spatial
scales: reach, patch, and pixel. For the reach scale, one roughness value was set for the channel,
and one value for the entire floodplain. For the patch scale, vegetation heights were used to classify
the floodplain into grass, scrub, and small and large trees, with a single roughness value for each.
The roughness values for the reach and patch methods were calibrated using a two-dimensional
(2D) hydrodynamic model (HEC-RAS) and data from in situ velocity sensors. For the pixel method,
we applied empirical equations that directly estimated roughness from vegetation height for each
pixel of the raster (no calibration necessary). Model simulations incorporating these roughness
datasets in 2D HEC-RAS were validated against water surface elevations (WSE) from seventeen
groundwater wells for seven high-flow events during the Fall of 2018 and 2019, and compared to
marked flood extents. The reach method tended to overestimate while the pixel method tended to
underestimate the flood extent. There were no visual differences between DLS and SfM within the
pixel and patch methods when comparing flood extents. All model simulations were not significantly
different with respect to the well WSEs (p > 0.05). The pixel methods had the lowest WSE RMSEs
(SfM: 0.136 m, DLS: 0.124 m). The other methods had RMSE values 0.01–0.02 m larger than the DLS
pixel method. Models with DLS data also had lower WSE RMSEs by 0.01 m when compared to
models utilizing SfM. This difference might not justify the increased cost of a DLS setup over SfM
(~150,000 vs. ~2000 USD for this study), though our use of the DLS DEM to determine SfM vegetation
heights might explain this minimal difference. We expect a poorer performance of the SfM-derived
vegetation heights/roughness values if we were using a SfM DEM, although further work is needed.
These results will help improve hydrodynamic modeling efforts, which are becoming increasingly
important for management and planning in response to climate change, specifically in regions were
high flow events are increasing.

Keywords: lidar; structure from motion; vegetative roughness; drones; unoccupied aerial system;
floodplains; flooding; hydrodynamic modeling; HEC-RAS; flooding

1. Introduction

Riverscapes are dynamic, linear riverine systems characterized by high connectivity
and spatial complexity [1,2]. Riverscapes provide crucial economic and societal services,
but are also prone to flood hazards [3]. Changes in the hydrologic cycle due to climate
change has resulted in increased heavy precipitation events and more extreme high-flow
events in the Eastern United States (US) [4]. The ability to accurately model floods will be

Remote Sens. 2021, 13, 2616. https://doi.org/10.3390/rs13132616 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7069-160X
https://orcid.org/0000-0002-9485-2604
https://orcid.org/0000-0002-5911-2803
https://doi.org/10.3390/rs13132616
https://doi.org/10.3390/rs13132616
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13132616
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13132616?type=check_update&version=2


Remote Sens. 2021, 13, 2616 2 of 19

of utmost importance for management activities in response to the challenges regarding
climate change [5].

Remote sensing techniques have been increasingly utilized to measure parameters
related to ecological and hydrological function of riverscapes due to decreased costs and
increased resolution [6]. Advancements in the technology and policy regarding unoccupied
aerial vehicles (UAV), or drones, have made these systems useful to researchers in small-
to medium-sized study areas (<1–10 km2) [7]. UAVs are operationally more flexible and
less expensive than aerial surveys (planes) and, because they can fly at lower altitudes,
the surveys produce data with higher resolution [8,9]. Of particular note for this paper,
there has been interest in using UAV data for hydraulic roughness estimates for use in
hydrodynamic modeling [10,11].

Roughness, which represents the resistance to flow in channels and floodplains [12],
is an important hydraulic characteristic that influences water surface elevation (WSE) and
velocity [13]. One of the most widely used roughness parameters is Manning’s roughness
(n), which is utilized in Manning’s empirical equation (Equation (1)) for determining
average velocity and discharge in open channels [14],

Q = VA =
1
n

A R
2
3 S

1
2 (1)

where Q is discharge (m3/s), V is velocity (m/s), A is cross sectional area (m2), R is
hydraulic radius (m; calculated as A divided by the length of the wetted perimeter), and S
is slope (m/m).

Manning’s roughness is one of the most sensitive variables in the equation, yet the
hardest to estimate [15]. Roughness has been estimated using look-up tables based on
descriptions of the channel, floodplain, and vegetation type [16], or by comparing with
photos of sites with previously calculated roughness values [17]. Other methods distribute
total roughness among important components: particle size, surface irregularities, shape
and size of the channel cross section, obstructions, vegetation, and channel planform [18].
All of these methods are highly subjective and, therefore, increase uncertainties associated
with determining n [19]. While these techniques are still being used for basic estimates
of roughness, new methods have been developed to determine n in more quantitative,
objective ways [20,21].

Vegetative resistance is an important component of overall roughness, and recent
studies have improved roughness estimates influenced by vegetation [19–22]. Restoration
of riparian or streamside forests has been a focus of stream restoration initiatives. Many
efforts have been made to quantify their effects on WSEs and velocities [13] because
vegetation converts mean kinetic energy to turbulent kinetic energy, thus affecting drag
and turbulence [23]. Studies involving theory-based equations and empirical equations
determined from flume data have been developed for submerged and emergent floodplain
vegetation [24–26]. These equations, dependent on plant characteristics and their spatial
distribution, have been applied to map the spatial distribution of roughness across a
floodplain [20]. Abu-Aly et al. [22] found that adding spatially distributed vegetation
roughness metrics in a two dimensional (2D) hydrodynamic model resulted in a more
accurate representation of the riverscape. When compared to a constant roughness model
significant differences were found, including a decrease in mean velocity (−17.5%), an
increase in wetted area (8%), and an increase in mean channel depth (7.4%).

One method of calculating vegetative roughness is to utilize data from light detection
and ranging (lidar), which is referred to as aerial laser scanning (ALS) when collect from an
aircraft [27,28]. There have been many environmental applications of ALS, such as measur-
ing canopy heights [27,29], terrain modeling [30], and measuring vegetative density [28,31].
The ability of ALS to collect data across large areas is useful for measuring physical param-
eters of riverscapes such as stream gradient, width, and sinuosity [32]. While vegetative
density is an important field-derived variable for many roughness equations [20], lidar-
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derived vegetative density was not found to have sufficient correlation to field-derived
vegetative density [31], but further investigation into this parameter is warranted.

A method outlined by Mason et al. [27] used ALS-derived vegetation height to deter-
mine n in floodplains. However, ALS point densities are typically limited to 10 points/m2,
making it difficult to detect small changes in the vegetation and terrain [8]. Another
lidar platform, drone laser scanning (DLS), is a novel method to measure riverscapes.
Resop et al. [8] compared ALS to DLS and found a large increase in the amount of points
classified as vegetation, from 2% to 12%. They also found that DLS was more accurate in
measuring heights, widths, and lengths of objects in the landscape such as bridges and
fences. Because of the increase in accuracy and the detection of more points, including
vegetation points, they concluded that DLS better captured the spatial heterogeneity of
both the terrain and vegetation [8].

DLS is uniquely positioned to measure vegetative metrics as it allows for increased
temporal (daily, monthly, seasonal flights), and spatial resolutions (more than 400 pts/m2

at 30-m flight elevation for the unit used in this study). Since UAVs fly at low altitudes,
the data resolution is well suited for hard-to-scan areas along riverscapes such as steep
streambanks and areas of dense vegetation [8]. The increase in resolution is also important
for low-lying vegetation and surface roughness, which are not as well detected by ALS
or other remote sensing methods [8]. DLS has been shown to have lower error than ALS
at measuring heights of a variety of vegetation types, which should lead to improved
roughness estimates [7,33].

In many studies, a UAV is paired with a camera as it is a more affordable option com-
pared to lidar systems [9,33–36]. Structure from motion (SfM) photogrammetry can then be
utilized to overlap the resulting aerial photos and create a point cloud of a landscape [35].
Past riverscape studies involving UAVs have used SfM photogrammetry techniques to
determine characteristics of riverscapes, such as mapping vegetation distribution [37],
detecting large woody debris [38], and monitoring stream restoration efforts [39]. Accu-
racy of SfM point clouds can be improved with the use of ground control points (GCPs),
which are surveyed points that can be seen in the aerial images [40,41]. Generally, ten
randomly dispersed GCPs are recommended per flight [38]. SfM photogrammetry can
barely penetrate a canopy resulting in almost no ground detection, depending on leaf area
and canopy closure [34]. This can result in object height errors within the point clouds,
especially in densely vegetated areas [35]. The possible products from SfM (e.g., digital
elevation models (DEM) and canopy height models (CHM)) are prone to errors that can
propagate through to estimates of roughness [40].

Past studies have used spatially variable roughness for 2D hydrodynamic model-
ing [27,42,43], some with field-derived vegetation measurements such as drag coeffi-
cients [20]. Studies investigating vegetation roughness have utilized a variety of 2D
hydrodynamic models, such as Telemack 2D [42], MIKEFLOOD [44], RIVER2D [43,45] and
SRH-2D [22]. In this study, we utilized 2D HEC-RAS (Hydrologic Engineering Center—
River Analysis System), a 2D hydrodynamic model developed by the US Army Corps
of Engineers (USACE) [46]. 2D HEC-RAS utilizes the Saint Venant equations to simulate
unsteady flow [46] and can take advantage of high-resolution remotely sensed datasets to
create spatially variable outputs, such as WSEs, velocities, and flood extents [22].

The purpose of this study was to evaluate and compare 2D hydrodynamic model
simulations of floods using different methods of estimating roughness based on DLS and
SfM point clouds. We determined hydraulic roughness at three spatial scales: reach, patch,
and pixel. For the reach scale, one roughness value was assigned for the channel and one
roughness value for the floodplain. The patch method utilized the vegetation heights to
classify the floodplain into grass, scrub, and small and large trees, and assigned a roughness
value to each classification. The pixel method applied empirical equations depending on
the vegetation height for each pixel of the raster [27]. Reach and patch scale roughness
values were calibrated using 2D HEC-RAS and data from velocity sensors. These rough-
ness estimates were then utilized in the 2D HEC-RAS hydrodynamic model [46]. Model
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simulations were validated against WSEs from seventeen groundwater wells at seven
high-flow events during the Fall of 2018 and 2019 and compared to marked flood extents.
This work leads to the better characterization of vegetative roughness on floodplains with
the potential for more accurate hydrodynamic models.

2. Materials and Methods
2.1. Study Area

The Virginia Tech (VT) Stream Research, Education, and Management (StREAM) Lab
is along a 1.5 km reach of Stroubles Creek downstream of the VT campus in Blacksburg,
Virginia, USA (Figure 1) [47]. Stroubles Creek is a gravel-bedded stream, with headwaters
located entirely within the Town of Blacksburg and the VT campus. The watershed up-
stream of the study area is 14.5 km2 and is 90% urban [48]. The Stroubles Creek watershed
is highly urbanized and, therefore, experiences rapid flood events and erosion. Due to the
aforementioned issues, Stroubles Creek has been on the U.S. Environmental Protection
Agency’s 303(d) list of impaired streams since 2003 [49].
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During 2009 and 2010, 1.5 km of Stroubles Creek was restored at the StREAM Lab [50].
The section between the top of the orthophoto and Bridge 2 (Figure 1a) involved regraded
vertical streambanks to a 3 to 1 slope and planting native riparian vegetation, while the
section downstream of Bridge 2 utilized a natural channel design that included installing
inset floodplains that transition to 3 to 1 slopes [50]. The restoration project increased
floodplain connectivity and vegetative complexity [51]. Because of the increased floodplain
connectivity and well-established vegetative cover from the restoration, we chose this
section of the StREAM Lab to evaluate vegetative roughness in relation to flood modeling.

2.2. Data Collection
2.2.1. Field Data

At StREAM Lab, there is in situ monitoring to assess the long-term effects of the stream
restoration completed in 2010. Within our specific study area, there is one monitoring
bridge (Bridge 2; Figure 1a) where stage and water quality parameters are continuously
measured (every 15 min). There are seventeen wells with pressure transducers (HOBO,
Onset Computer Corporation, Bourne, MA, USA) measuring water elevations every 15
min (Figure 1a). Water elevations from the wells were utilized at the peaks of the measured
floods as determined by the stage sensor at Bridge 2 (Figure 2). Measured floods were
selected during the Fall of 2018 and 2019. Sontek-IQ Plus uplooking acoustic Doppler
velocity meters (Sontek—a Xylem brand, San Diego, CA, USA) were deployed upstream
of Bridge 2 to measure velocity and WSE in the channel and on the floodplain (Figure 1a).
The floodplain sensor was initially deployed at the downstream location, but was moved
to the upstream location on the inset floodplain on 30 October 2019 to capture data at
lower flows and to avoid backwater that was affecting the initial floodplain sensor location.
The velocity sensors, placed in the thalweg, recorded an average velocity profile over a
duration of 2 min and reported this average velocity profile every 5 min. That is, the
velocity data have a 5-min resolution and each “instantaneous” measurement is a 2-min
average. Vertically averaged velocity (which is simulated in our 2D model) was estimated
from our velocity profile data by fitting a logarithmic curve [52,53] to the profile obtained
every 5 min and then determining the average velocity from the curve fit. This was done
to account for unmeasured regions in the velocity profile (near the bed and at the water
surface) to obtain the most representative average value [53]. Lastly, the extent of the flood
that occurred on 11 October 2018 was flagged and surveyed to determine WSEs at the peak
flow throughout the study area. These field data were used to calibrate (velocity sensors),
validate (wells), and compare (flood extents) the roughness metrics derived from SfM and
DLS techniques.

2.2.2. DLS Data

The UAV system utilized for lidar surveys was a Vapor35 (AeroVironment, Simi Valley,
CA, USA) with a YellowScan Surveyor Core lidar unit (Monfeerier-sur-Lez, France). The
lidar unit consists of a Velodyne VLP-16 laser scanner (Velodyne, San Jose, CA, USA) and a
GNSS-inertial Trimble APPLANIX APX-15 (Trimble, Richmond Hill, ON, Canada). To plan
and conduct Vapor35 flights, we used the wePilot1000 flight control system and the weGCS
ground control system software (weControl SA, Courtelary, Switzerland). The lidar flights
were flown at a 30 m altitude, with 20 m flight-line spacing, which was recommended by
YellowScan staff for optimum point spacing and density. The lidar flight was conducted on
9 October 2018.
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Figure 2. Stage hydrograph recorded at Bridge 2 of StREAM Lab with the seven utilized floods and the durations of sensor
data collection.

The YellowScan system is ultralight (2.1 kg) which is the allowable payload limit for
the Vapor35. The lidar system can record two returns per pulse and uses a wavelength
of 905 nm. The Velodyne VLP-16 and the APPLANIX unit allow for one button data
acquisition. After the flight, data was corrected using a local CORS base station, and was
outputted into a LAS file format in UTM zone 17N. Figure 3b shows a subsection of lidar
from our study site. Figure 3c shows subsections of the lidar to demonstrate the variable
vegetation heights throughout the floodplains.

2.2.3. SfM Data

The UAV system utilized for collecting aerial imagery was a DJI Mavic Pro (DJI, Shen-
zen, China) with an included 4k camera. The camera specifications are “1/2.3” (CMOS),
effective pixels: 12.35 M (Total pixels: 12.71 M), according to the DJI website. The DJI Flight
Mapper (AeroScientific, Adelaide, Australia) application was utilized to create flight maps
in the study area, while the Litchi (VC Technology, London, UK) application was used
to conduct the pre-programmed flights. Flights were conducted at midday to minimize
shadow effects on the images and a total of nine GCPs were used. The study area was
divided into three flight areas due to flight motor battery constraints, with the camera at
nadir. Flights were flown at 36.5 m altitude with settings recommended by the DJI Flight
Mapper application. A fourth flight was flown over the entire study area at 61 m altitude
with the camera at 75 degrees. Flights flown at different angles and altitudes have been
determined to create more accurate point clouds, as it creates a more comprehensive view
of the landscape [54,55]. Images were taken every 2 s to ensure an 80% overlap to improve
the accuracy of the point cloud. The photogrammetry flight was conducted on 11 June
2020, resulting in 3505 images.

The acquired images were post-processed using Agisoft Metashape (Agisoft Metashape,
St. Petersburg, Russia) following a standard workflow: importing the UAV images, initial
processing, importing the GCPs, and creating a dense point cloud. This process resulted in
a point cloud in LAS file format in UTM Zone 17N.



Remote Sens. 2021, 13, 2616 7 of 19
Remote Sens. 2021, 13, 2616 7 of 20 
 

 

 
Figure 3. Visualization of StREAM Lab: (a) flood from Hurricane Michael on 11 October 2018, (b) 
DLS point cloud with the black rectangular box denoting where Figure 3c is located, (c) zoom in 
focusing on cross-sections taken from Figure 3b highlighting the vegetation variation across the 
floodplain. 

2.2.3. SfM Data 
The UAV system utilized for collecting aerial imagery was a DJI Mavic Pro (DJI, 

Shenzen, China) with an included 4k camera. The camera specifications are “1/2.3” 
(CMOS), effective pixels: 12.35 M (Total pixels: 12.71 M), according to the DJI website. The 
DJI Flight Mapper (AeroScientific, Adelaide, Australia) application was utilized to create 

Figure 3. Visualization of StREAM Lab: (a) flood from Hurricane Michael on 11 October 2018, (b) DLS
point cloud with the black rectangular box denoting where Figure 3c is located, (c) zoom in focusing
on cross-sections taken from Figure 3b highlighting the vegetation variation across the floodplain.

2.2.4. Final Point Cloud Data

Lidar and SfM point clouds were not adequate for producing channel bathymetry
measurements, therefore we conducted a detailed survey of the below-water stream chan-
nel with a Trimble R12 GNSS System (Trimble, Sunnyvale, CA, USA) to fill in the data
gaps. Gaps in the point cloud were present since near infrared light, which is used by our
lidar unit, is absorbed by water. We did not use SfM to measure bathymetry due the need
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to correct for reflection, refraction and turbidity and since most of the stream is covered
by the canopy. Bathymetry data were collected at the top and toe of banks and at least
one point in the deepest part of channel cross sections at streamwise spacings of roughly
one channel width apart. LAStools (rapidlasso GmbH, Gilching, Germany) was used to
classify the ground points of the point clouds using the default settings of the LASground
tool. ArcGIS Pro (ESRI, Redlands, CA, USA) was used to manually classify points such as
bridges and other human-made objects. All other above-ground points were considered
vegetation, with a 0.1 m buffer to account for uncertainty between the ground and the low
vegetation. This classification of vegetation points, height normalization using the ground
points, and creation of a CHM were performed using the LASheight and LAS2dem tools in
LAStools. The CHM pixel size was set to 0.1 m to take advantage of the high-resolution
data of both point clouds. For our study, CHM represents vegetation heights and DEM
represents bare earth elevation. The final point cloud density for lidar was approximately
262 points per m2 and 1480 points per m2 for SfM

2.3. Roughness Raster Creation

To create a raster data layer of vegetative roughness, three different roughness esti-
mation techniques were implemented. For the first method, hereafter referred to as the
“reach” method, we calibrated one roughness value for the entire channel and one value
for the entire floodplain (including the inset floodplain). We used the in-channel velocity
sensor to calibrate the channel roughness and the floodplain velocity sensor to calibrate the
floodplain roughness.

For the second method, hereafter referred to as the “patch” method, we created a
roughness raster layer for classes of floodplain vegetation. Utilizing the generated CHMs
(Figure 4d,e), vegetation height ranges were used to reclassify pixels into vegetative groups
of grass (0 m to 1 m), scrub (1 m to 2.5 m), small trees (2.5 m to 5 m), and large trees (5 m
to 20 m) [16]. As in the previous method, these vegetation classes were then calibrated by
changing the roughness parameters to best fit the velocity sensor data (Figure 4h,i).

The third method was a simplified version of an approach developed by Mason et al. [27],
hereafter referred to as the “pixel” method. The pixel method uses simplified flume and
theoretical relationships so that only vegetation heights are required to solve for Darcy-
Weisbach friction coefficients, f . The friction coefficients were then converted to n, using
a relationship developed by Fathi-Maghadam and Kouwen [26]. This method assumes
similar rigidity, shape, and momentum absorptivity of vegetative classes to avoid the need
for extensive field work to determine individual plant properties [56].

Formulas have been developed to predict f for short submerged vegetation less than
1 m (Equation (2)) [25,57] and emergent medium to tall vegetation (Equation (3)) [26],

1√
f
= a + b log(

yn

k
) (2)

f = 4.06

 V√
εE
ρ

−0.46
yn

h
(3)

where V is the flow velocity (m/s), ρ is water density (kg/m3), yn is the normal depth of
water (m), h is the vegetation height (m) (Figure 4d,e), εE is a measure of tree elasticity
(N/m2), and k is the deflected grass vegetation height (m). The variables a and b are
related to the boundary shear stress. Since 2D HEC-RAS (version 5.07) cannot utilize
stage dependent roughness, typical values were used for the depth (yn = 1 m) and velocity
(V = 0.05 m/s) to determine f , similar to what was employed by Hopkinson et al. [56].
As in Mason et al. [27], we used elasticity values determined by Kouwen and Fathi-
Moghadam [26]. The εE selected was white pine (εE = 2.99), lying in the range of the trees
in our study site.
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Figure 4. Data visualization workflow: (a) DLS point cloud of the study site, (b) SfM point cloud of
the study site, (c) DEM derived from the DLS point cloud at a meander bend, (d) DLS CHM, (e) SfM
CHM, (f) roughness raster from the pixel method using DLS, (g) roughness raster from the pixel
method using SfM, (h) roughness raster from the patch method using DLS, (i) roughness raster from
the patch method using SfM, (j) roughness raster from manually assigned floodplain and channel
roughness values.

The final raster of n was calculated from the friction coefficient (Equation (4)) [27].
Since this is a calculated roughness, it was not calibrated like the first two methods.
Assuming that the hydraulic radius equals the normal depth, Manning’s roughness was
determined using a relationship developed by Fathi-Maghadam and Kouwen [26],

n =

√
f yn1/3

8g
(4)

where g (m/s2) is the gravitational acceleration constant.
The patch and pixel methods were repeated with the UAV SfM photogrammetry

data (Figure 4g,i). To ensure spatial consistency, the SfM point cloud was aligned to the
DLS point cloud using the align tool in CloudCompare (https://www.danielgm.net/cc/,

https://www.danielgm.net/cc/
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accessed on 15 August 2018). This was then put through a similar workflow as the DLS
point cloud to create a CHM using the DLS DEM and vegetation points from the SfM
dataset. This CHM (Figure 4e) was then used to produce raster roughness layers using
the patch and pixel methods described above (Figure 4g,i). Since the datasets were similar,
the calibrated DLS patch roughness values were used for SfM patch roughness values. To
focus the study on vegetation roughness, the DLS DEM was used for all models to ensure
that the roughness parameter was the only changing variable between each model.

2.4. Hydrodynamic Modeling

The data analyses and modeling process are illustrated in Figure 5. After data collec-
tion activities we created a 2D HEC-RAS model to simulate flooding at the study site using
the three different Manning’s roughness estimation methods, or five different roughness
inputs because of DLS and SfM data. 2D hydrodynamic modeling was used to predict
WSEs, flood extent, and flow velocities at several steady-state discharges. Inputs for 2D
HEC-RAS included the DLS DEM, the slope at the downstream boundary, a flow area to
create a mesh of calculation points created in the program, a series of flows at the upstream
boundary condition, and a roughness raster. We generated a 2D mesh in HEC-RAS con-
sisting of 1 m2 cells, each containing a calculation point. The grid mesh had break-lines in
the channel and along the inset floodplain to align the mesh to the stream channel, so that
water did not prematurely flow into the floodplain.
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2.5. Model Validation

To evaluate modeled results, we compared predicted versus measured well WSEs
for the seven flood events using a Wilcoxon Rank-Sum Test resulting in p-values and
linear regression, resulting in r2 values. The null hypothesis tested was no significant
difference between the well WSEs and the corresponding modeled WSEs. This method was
used by Cobby et al. [42] in a similar study to validate constant and variable friction 2D
hydrodynamic model outputs compared to synthetic aperture radar-derived flood extents.

To assess which model better predicted flooding, we compared measured WSE to
the modeled WSE at each measured flood peak using the root mean square error (RMSE)
(Equation (5)).

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − x̂i)
2 (5)

where x̂i is the modeled WSE and xi is the measured WSE. All statistics were done in R
(version 4.0.3).

3. Results

Depth-average velocities and WSEs from the velocity sensors were used to visually
calibrate the roughness values for the reach and patch methods (Figure 6). WSEs and
velocities were extracted from the models at the locations of each velocity sensor. For the
reach method, the final calibrated roughness values used for the channel and the floodplain
were 0.04 and 0.5, respectively. For the patch method, the final calibrated roughness values
were grass (n = 0.05), scrub (n = 0.07), small tree (n = 0.16), and large tree (n = 0.20).
At an elevation of approximately 604.3 m, flow began to overtop the banks and inundate
the floodplain. For the in-channel velocity sensor, all models were relatively consistent
among each other and generally followed the measured velocity data when flows were
above the top of bank (Figure 6b). Because we could only calibrate the model to a single
roughness value, we chose roughness characteristics representative of the flows that were
overtopping the floodplain and accepted the larger errors in the channel at low flows
since flood flows were of most interest in this study. The two floodplain velocity locations
show that the models were not consistent among each other and not consistent for the
floodplain locations. For the upstream floodplain location, the only model that somewhat
followed the measured velocity data was the DLS pixel method, whereas all the other
methods underestimated the depth-average velocity (Figure 6a). For the downstream
floodplain location, the reach method and the two patch methods slightly overestimated
the measured velocity data, whereas the pixel methods substantially overestimated the
measured velocity data (Figure 6c). These stark differences among the models and between
the floodplain sensors were due to the large differences in roughness values assigned for
the same locations, which are denoted for each model in the legend of Figure 6.

For the validation results, we found no significant differences (p > 0.05) when com-
paring the WSEs from the seventeen wells (Figure 1a) during the seven flood events to
the modeled WSEs (Figure 7). All modeled values are strongly correlated, with r2 values
between 0.93 and 0.94. The DLS pixel method predicted the WSEs better than the cali-
brated models (DLS patch and reach). The pixel methods resulted in the smallest RMSE
(SfM: 0.136 m, DLS: 0.124 m), by 0.02 m, suggesting that the empirical equations slightly
outperform the patch and reach methods, which assigns roughness values based solely on
height. Models with DLS data also had lower WSE RMSEs, by 0.01 m, when compared to
models utilizing SfM.



Remote Sens. 2021, 13, 2616 12 of 19

Remote Sens. 2021, 13, 2616 12 of 20 
 

 

where 𝑥  is the modeled WSE and 𝑥  is the measured WSE. All statistics were done in R 
(version 4.0.3). 

3. Results 
Depth-average velocities and WSEs from the velocity sensors were used to visually 

calibrate the roughness values for the reach and patch methods (Figure 6). WSEs and ve-
locities were extracted from the models at the locations of each velocity sensor. For the 
reach method, the final calibrated roughness values used for the channel and the flood-
plain were 0.04 and 0.5, respectively. For the patch method, the final calibrated roughness 
values were grass (𝑛 =  0.05), scrub (𝑛 =  0.07), small tree (𝑛 =  0.16), and large tree (𝑛 = 0.20). At an elevation of approximately 604.3 m, flow began to overtop the banks and 
inundate the floodplain. For the in-channel velocity sensor, all models were relatively con-
sistent among each other and generally followed the measured velocity data when flows 
were above the top of bank (Figure 6b). Because we could only calibrate the model to a 
single roughness value, we chose roughness characteristics representative of the flows 
that were overtopping the floodplain and accepted the larger errors in the channel at low 
flows since flood flows were of most interest in this study. The two floodplain velocity 
locations show that the models were not consistent among each other and not consistent 
for the floodplain locations. For the upstream floodplain location, the only model that 
somewhat followed the measured velocity data was the DLS pixel method, whereas all 
the other methods underestimated the depth-average velocity (Figure 6a). For the down-
stream floodplain location, the reach method and the two patch methods slightly overes-
timated the measured velocity data, whereas the pixel methods substantially overesti-
mated the measured velocity data (Figure 6c). These stark differences among the models 
and between the floodplain sensors were due to the large differences in roughness values 
assigned for the same locations, which are denoted for each model in the legend of Figure 
6. 

 
Figure 6. Velocity sensor data compared to modeled velocities and WSE with roughness values of 
each velocity sensor location denoted: (a) data taken from upstream floodplain at an elevation of 
603.412 m, (b) Data taken from channel bed at an elevation of 602.949 m, (c) Data taken from down-
stream floodplain at an elevation of 603.825 m. 

  

Figure 6. Velocity sensor data compared to modeled velocities and WSE with roughness values of each velocity sensor
location denoted: (a) data taken from upstream floodplain at an elevation of 603.412 m, (b) Data taken from channel bed at
an elevation of 602.949 m, (c) Data taken from downstream floodplain at an elevation of 603.825 m.

Remote Sens. 2021, 13, 2616 13 of 20 
 

 

For the validation results, we found no significant differences (p > 0.05) when com-
paring the WSEs from the seventeen wells (Figure 1a) during the seven flood events to the 
modeled WSEs (Figure 7). All modeled values are strongly correlated, with 𝑟  values be-
tween 0.93 and 0.94. The DLS pixel method predicted the WSEs better than the calibrated 
models (DLS patch and reach). The pixel methods resulted in the smallest 𝑅𝑀𝑆𝐸 (SfM: 
0.136 m, DLS: 0.124 m), by 0.02 m, suggesting that the empirical equations slightly outper-
form the patch and reach methods, which assigns roughness values based solely on 
height. Models with DLS data also had lower WSE RMSEs, by 0.01 m, when compared to 
models utilizing SfM. 

 
Figure 7. Comparison of measured groundwater well WSE to simulated WSE from the 23 September 
2018, 11 October 2018 and 31 October 2019 floods. The RMSEs, p-values and r2 values are from the 
validation step. The p-values are outputs of the Wilcoxon Rank-Sum Test. 

From the models, flood extents for each roughness raster were compared to the man-
ually flagged flood extent with a stream stage at Bridge 2 (Figure 2) of approximately 1.53 
m (606.56 m in elevation) (Figure 8). Only the reach method and one of each of the other 
methods are shown in Figure 8 because there was little difference between the DLS and 
SfM models. The patch method estimated the flood extents most accurately with slight 
deviation farthest downstream (Figure 8a). The DLS pixel method (Figure 8b) tended to 
underestimate the flood, as seen in the top right corner of flood extent. The reach method 
(Figure 8c) tended to overestimate the flood, as seen in the top right corner and bottom 
left corner of the flood extent. Holistically, the models overestimated when compared to 
WSEs at the flagged flood extents, especially farther downstream (Figure 9). The reach 
method overestimated the most with the patch method not far behind. 

Figure 7. Comparison of measured groundwater well WSE to simulated WSE from the 23 September 2018, 11 October 2018
and 31 October 2019 floods. The RMSEs, p-values and r2 values are from the validation step. The p-values are outputs of the
Wilcoxon Rank-Sum Test.

From the models, flood extents for each roughness raster were compared to the
manually flagged flood extent with a stream stage at Bridge 2 (Figure 2) of approximately
1.53 m (606.56 m in elevation) (Figure 8). Only the reach method and one of each of the
other methods are shown in Figure 8 because there was little difference between the DLS
and SfM models. The patch method estimated the flood extents most accurately with slight
deviation farthest downstream (Figure 8a). The DLS pixel method (Figure 8b) tended to
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underestimate the flood, as seen in the top right corner of flood extent. The reach method
(Figure 8c) tended to overestimate the flood, as seen in the top right corner and bottom left
corner of the flood extent. Holistically, the models overestimated when compared to WSEs
at the flagged flood extents, especially farther downstream (Figure 9). The reach method
overestimated the most with the patch method not far behind.
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4. Discussion
4.1. Discussion of Results

Evaluation of WSEs at the flagged flood extents showed discrepancies at the down-
stream end of our study reach (Figures 8 and 9). These may be attributed to model boundary
condition issues or the presence of denser vegetation along this portion of the floodplain.
However, we suspect that this most likely occurred due to consistently denser vegetation
occurring downstream of Bridge 2, and because no velocity sensor was placed in this
section, effectively allowing the calibrated methods to be biased to the conditions in the
middle of the reach where calibration data were measured. Additionally, flagging flood
extents can be difficult due to difficulties seeing the floodwaters in areas with thick vegeta-
tion. Another limitation to flagging is that it takes time, thus it likely does not capture the
true peak of the hydrograph.

The DLS pixel method predicted the WSEs better than the calibrated models (DLS
patch and reach). This is an important note because the pixel method does not require a
gage to calibrate to, meaning it could be applied to areas without traditional monitoring
data and reduces the amount of time running the models for calibration.

All modeled WSEs were not significantly different from the groundwater well WSEs
(p-values > 0.05; Figure 7) with r2 values between 0.93 and 0.94. The resulting r2 values are
an improvement over ALS studies, such as Cobby et al. [42], who found constant n model
runs had p-values less than 0.05. This is also an improvement over Abu-Aly et al. [22],
another ALS study, who reported an r2 of 0.60. Therefore, utilizing high-resolution DLS
data for model inputs, such as the DEM, appears to improve hydrodynamic simulations.
Additionally, it can be noted in Figure 7 that lower WSEs are over estimating, while the
higher WSEs are underestimating across all models. Again, these differences are attributed
to potential boundary condition issues, as well as denser vegetation, namely American
Sycamore trees, being present at the downstream portion of our study site.

The SfM pixel method RMSE (0.136 m) was slightly higher than that reported by
Tamminga et al. [43] where they used photogrammetry to create 2D hydrodynamic model
inputs, and reported a RMSE of 0.1325 m. Their study area was for a braided channel,
that appeared to have less vegetation in their flow area. Even with this difference, our
RMSE closely agrees with theirs, with only a 3.5 mm difference. One caveat of our data
analysis is that the DLS DEM was used for all model runs (even those using SfM roughness
estimates) to ensure that the only changing variable in the model is the roughness itself.
For more detailed analysis for determining the accuracy of UAV-derived vegetation height,
the reader is directed to Kucharczyk et al. [7] for DLS and Dandois and Ellis [34] for
SfM photogrammetry.

Both the DLS and SfM roughness raster data layers created by the pixel method
had n values ranging from 0.05 to 0.92 (Figure 4f,g). Most values were 0.05, for very
short (<0.1 m) vegetation in the floodplain. These values are consistent with the findings
of Mason et al. [27], who reported floodplain n values ranging from 0.07 to 0.83 at high
stage (depths around 1 m in the floodplain). Because the normal depth was set to 1 m,
the tall grass around 1 m had the largest n values. This is also due to the separation in
vegetation classes by the two formulas, where 1 m vegetation heights would have the
highest roughness value. Trees receive roughness values in the 0.60 range for the pixel
method, which is much higher than lookup table values, which range from 0.03 to 0.20 [16].

4.2. DEM and Other Considerations

There are no significant differences between each roughness estimation method
(Figures 7–9). Such small differences in the presented statistics and figures are likely at-
tributed to the consistent use of the DLS DEM, which has a resolution of 10 cm, whereas
most open access DEMs have larger resolutions ranging from 1 m to 5 m. Utilization of
these open access DEMs could produce different results since they do not account for
microtopography as well as our 10 cm DLS DEM.
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Floodplain vegetation at the StREAM Lab is extremely complex as exhibited by the
velocities in Figure 6, therefore, these hydrodynamic simulations are not able to consistently
account for velocities at every location, especially along the boundaries between differing
vegetation types and heights. They also highlight how each roughness estimation method
results in a different roughness value for the same location. The roughness values assigned
for the upstream floodplain velocity sensor ranged from 0.05 to 0.5 (Figure 6a), with the
DLS pixel method having the lowest n value, but following the measured velocity data
values the best. For the downstream floodplain velocity sensor, roughness values had the
same range as the upstream floodplain velocity sensor (Figure 6c), but the reach and patch
methods predicted the measured values the best while having the higher roughness values
(0.5 to 0.4 compared to 0.06 to 0.05).

Determining whether to use lidar or SfM photogrammetry for mapping roughness for
flood modeling depends on available resources and research goals. The advantages and
disadvantages of each is an active discussion topic especially since there is not complete
lidar coverage of the US. Drone lidar systems are very expensive, while statewide pho-
togrammetric point clouds have been collected for certain US states and photogrammetry
is a capability of most drones. UAV photogrammetry costs substantially less than UAV
DLS (2000 USD versus 150,000 USD for this study), but generally requires a high-resolution
DEM for ground detection. Cross sections at the StREAM Lab are shown in Figure 10
for visual comparison of resulting point clouds. The SfM cross sections tend to overes-
timate heights for most flat grassy surfaces, but are able to capture the general outline
of the trees. These results correspond with the findings of Thomas et al. [58] who found
high error (RMSE = ±1 m) when comparing field and SfM derived grass heights, and
Sankey et al. [33], who found strong correlations between SfM derived and field measured
tree height. They determined that the relationship was not as good as DLS tree height
(r2 = 0.90), but that it was highly correlated (r2 = 0.70). Another study found a higher
correlation between field measured tree height and SfM derived tree height (r2 = 0.96) but
had a large error value (RMSE = 1.91) [59]. These differences shown in Figure 10 and the
cited studies might explain some of the starkly different behavior in the modeled velocity
data and the flood extent differences. Additionally, the SfM and DLS point clouds were
collected in different years (2020 versus 2018) and different seasonal months (June versus
October) due to data availability. These time and seasonal differences could also affect the
point cloud cross sections, modeled velocity data, and modeled flood extents.
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Another cost to consider is the processing power required to create a dense point
cloud using SfM techniques, compared to lidar which computes a raw LAS file with limited
processing. The last consideration for SfM is the increased time necessary to fly more than
one flight. In this study, we needed four SfM flights, which took around two hours, to get
data comparable to the one 30-min DLS flight to cover the same area, though the SfM flights
could have been flown at higher altitudes to lessen the flight duration, resulting in slightly
lower resolution data. Even with these considerations, SfM is significantly less expensive.
There is only a difference of 0.01 m RMSE between SfM and DLS data from this study, but
keep in mind that our study utilized a high-resolution DLS DEM, which represents the
ground much more accurately than a SfM DEM. Further studies are needed to determine if
SfM derived DEM data can provide adequate results for 2D hydrodynamic modeling.

4.3. Future Studies

Future research should utilize freely available DEMs to see how the DEM resolution
affects modeled results. Additionally, future research should include more field data that
is purposely measured at critical areas such as where vegetation type changes and where
inset floodplains are located. Seasonal changes should also be accounted for, namely the
die-off of herbaceous vegetation. This could be done by updating the roughness raster data
layers with seasonal UAV flights.

Additionally, the downstream discrepancies seen in this study most likely occurred
since vegetation in this section of the floodplain is much denser than elsewhere. This shows
that classifying vegetation by height alone does not account for differences in density that
would increase roughness, thus future research needs to better evaluate vegetation density
and not just vegetation height. Other research topics to explore are depth dependent
roughness and how roughness might be altered after each flood event. Lidar paired with
spectral data could also be used to account for both the structure and function of floodplain
vegetation seasonally along with before and after flood events [28].

5. Conclusions

DLS and SfM data were collected over the Virginia Tech StREAM Lab in Blacksburg,
Virginia, US. The DLS point cloud was used to create a DEM. The DEM was then subtracted
from each point cloud to determine vegetation height. To create a raster data layer of
vegetative roughness, three different roughness estimation techniques were implemented.
For the first method, known as the “reach” method, a uniform roughness was calibrated for
the entire reach, one value for the channel and one value for the floodplain. An in-channel
velocity sensor was used to calibrate the channel roughness and the floodplain velocity
sensor was used to calibrate the floodplain roughness with final values being 0.04 and 0.5,
respectively. For the second method, known as the “patch” method, roughness values
corresponding to classes of floodplain vegetation were assigned based on the CHM. As
in the previous method, these vegetation class roughness values were then calibrated by
using velocity sensors: grass (0 m to 1 m, n = 0.05), scrub (1 m to 2.5 m, n = 0.07), small tree
(2.5 m to 5 m, n = 0.16) and large tree (5 m to 20 m, n = 0.20). The third method, known as
the “pixel” method, assigned a roughness value for each pixel using a set of equations that
considers if the vegetation is short submerged vegetation less than 1 m or non-submerged
medium to tall vegetation along with elasticity. The pixel and patch methods were applied
to each CHM. Then, each raster was used for hydrodynamic modeling in 2D HEC-RAS.
Field data were then used to calibrate (velocity sensors), validate (groundwater well WSEs),
and compare (flood extents) the roughness methods derived from SfM and DLS datasets.

For the flood extents, the reach method tended to overestimate while the pixel method
tended to underestimate. There were no visual differences between DLS and SfM within
the pixel and patch methods. For the groundwater well WSEs, there were no significant
differences between the measured and modeled results and no significant differences
between the modeled results. The pixel methods had the smallest RMSE (SfM: 0.136 m,
DLS: 0.124 m), showing that the empirical equations slightly outperform the patch method,
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which assigned roughness values solely based on height. All the calculated statistics were
relatively similar, probably due to the consistent use of the high-resolution DEM derived
from the DLS point cloud. Research utilizing freely accessible DEMs should be performed
to investigate how DEM resolution affects hydrodynamic modeling results. Future research
should utilize point clouds to investigate vegetation density, how vegetation affects depth-
dependent roughness, how seasonal vegetation changes affect flooding, and how individual
flood events may alter vegetation roughness.
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