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Abstract

There is currently a need for robust, high-resolution monitoring techniques to assess and quantify ecosys-

tem dynamics within surface water bodies and their riparian ecosystems. This study presents a cost effective,

user-friendly technique for examining the ecohydrology of stream and river corridors through the use of digi-

tal imagery. Using a simple digital camera, we captured hourly images of a small portion of a headwater

Appalachian stream and adjacent floodplain. Then, we used pixel classification techniques to evaluate ecohy-

drologic parameters (e.g., inundation surface area, floodplain wetness, and vegetation dynamics) in each

image. Results highlight the episodic nature of river floodplain connectivity, variation in surface wetness

across the gradient from river to upland ecosystems, and the seasonal variability of vegetation density and

health. To validate the accuracy of image-based measurements, we then compared inundation area estimates

to an existing inundation model and found a high level of agreement (R2 5 0.94; NRMSE 5 7.96%). Our study

highlights the use of time-lapse imagery as a robust, cost-effective method to capture the dynamics of river

corridors and associated ecosystem services.

The study of interactions between water resources and

their surrounding ecosystems, known as ecohydrology, is a

critical component of evaluating and conserving ecosystem

services (Rodriguez-Iturbe 2000; Braumen et al. 2007;

Grygoruk and Acreman 2015). Of particular interest, riparian

and floodplain ecosystems provide many critical ecosystem

services, ranging from increased biodiversity (Naiman et al.

1993; Harding et al. 1998), flood peak attenuation (Sheaffer

et al. 2002), and biogeochemical processing of reactive sol-

utes (Scott et al. 2014; Boudell et al. 2015). While riparian

zones and floodplains have been studied extensively (e.g.,

Tockner and Stanford 2002), much of our understanding is

based on coarse resolution observations in both spatial and

temporal domains (Kirchner et al. 2004).

Because of the economic impact and ecological impor-

tance of flooding, a great deal of effort has been invested in

mapping inundation extent in floodplains. Methods range

from hydrodynamic modeling (e.g., Hunter et al. 2007),

remote sensing (e.g., Vanderhoof et al. 2015), and even tree

ring record analysis (e.g., Ballesteros et al. 2011). While these

methods can produce fairly reliable estimates of inundation,

they often lack proper validation techniques because of the

lack of high resolution data and the episodic nature of flood-

ing. For example, the U. S. Army Corps of Engineers’ River

Analysis System (HEC-RAS) model is often used to estimate

inundation extent. However, because there is a great deal of

uncertainty typically associated with the model inputs (e.g.,

channel bathymetry, stream flow, hydraulic roughness coef-

ficients) and because validation data is typically not avail-

able, there is often considerable error associated with the

modeled inundation extent (Merwade et al. 2008a). Several

remote sensing products such as Light Detection and Rang-

ing (LiDAR) and multispectral imagery have been used to

characterize inundation extent and other relevant hydrogeo-

morphic parameters. Traditionally, LiDAR has been used to

measure high resolution topographic data (Cook and

Merwade 2009; Bates 2012; Saksena and Merwade 2015).

However, other relevant uses of LiDAR include the assess-

ment of geomorphic stability (Resop and Hession 2010),

measurement of habitat structure and diversity (Milan et al.

2010; Resop et al. 2012), and quantification of vegetative

roughness (Straatsma and Baptist 2008; Abu-Aly et al. 2014).

Recent advancements in LiDAR data have also allowed for

the detection of inundated areas (Lang and McCarty 2009;

Milan and Heritage 2012) and even the measurement of

channel bathymetry (Hilldale and Raff 2008; Skinner 2011).

Multispectral imagery has also been used in a wide variety of

fluvial studies for mapping stream features (e.g., Leckie et al.
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2005) and monitoring stream morphology (e.g., Wright

et al. 2000). While these methods can delineate stream inun-

dation with high accuracy, data collection remains relatively

expensive and time consuming, and thus, there is a need to

develop low-cost alternatives.

Identification of “wet areas” across the landscape is also

of interest for both our mechanistic understanding of ecosys-

tem processes and from a regulatory perspective. Specifically,

saturated soils drive many redox processes that lead to bio-

geochemical transformations including denitrification (e.g.,

Anderson et al. 2015), carbon sequestration (e.g., Davidson

and Janssens 2006), and greenhouse gas production (e.g.,

Batson et al. 2015). Because of the spatial and temporal het-

erogeneity of both surface and subsurface flowpaths in flood-

plains and riparian zones, redox conditions and associated

biogeochemical processes are often intermittent and difficult

to measure and generalize (Vidon et al. 2015). Currently, soil

moisture is characterized through point measurements and/

or remote sensing (Dobriyal et al. 2012). However, point

measurements are often misleading because the heterogene-

ity associated with riparian soils and remote sensing often

restricts the ability to capture temporal variations. This often

complicates regulatory decisions associated with wetland

delineation, where wetland hydrologic conditions must be

proven through a series of visual indicators and/or shallow

well installations (Fennessy et al. 2004). Therefore, both the

research and regulatory communities would benefit from the

development of a new, low cost technique that robustly

identifies “wet areas” with both high spatial and temporal

resolutions.

Seasonal vegetation dynamics are also crucial to under-

stand when investigating riparian ecosystem processes. Vege-

tation phenology can be used as a measure of ecosystem

productivity (Field et al. 1995) as well as an indicator of

overall ecosystem health (Baird and Wilby 1999). Moreover,

vegetation metrics can be used as auxiliary information to

aid in data interpretation from other sensors. At a broad

scale, multispectral vegetation indices can be used as a

remotely sensed metric to assess both terrestrial and aquatic

vegetation dynamics. Most commonly used is the normal-

ized difference vegetation index (NDVI), which calculates

the difference between the near infrared and red spectral

bands. The NDVI has been widely used in the field of remote

sensing as a measure of vegetative greenness and overall eco-

system health (e.g., DeFries and Townshend 1994; Pettorelli

et al. 2005). However when raster data are only comprised of

three spectral bands, as is the case for Red Green Blue (RGB)

digital imagery, multispectral vegetation indices such as the

NDVI cannot be used. This becomes problematic when

investigating riparian ecosystems as freely available satellite

remote sensing does not have the spatial or temporal resolu-

tion necessary to accurately analyze riparian ecosystems.

Similar to landscape moisture metrics, there is currently a

need for high resolution spatiotemporal measurements of

riparian and floodplain vegetation dynamics.

Here, we outline an approach to measure ecohydrologic

parameters within riparian zones and floodplains through

the use of time-lapse imagery. We demonstrate the measure-

ment of three critical parameters within the context of eco-

hydrology, an emerging field with a dearth of research

focusing on monitoring and assessment techniques. While

the complex coupling of disciplines within ecohydrology has

hindered high resolution ecohydrologic monitoring thus far

(Krause et al. 2015), there is a great need for innovative tech-

niques that can overcome the challenges associated with

measuring temporally and spatially heterogeneous processes.

The methodology described in this article fills such a gap

with a straight forward, inexpensive, and robust monitoring

system. A comprehensive workflow of our methodology is

provided within the following sections to ensure that this

methodology can be easily replicated and improved on.

Materials and procedures

Site description

We used the Virginia Tech Stream Restoration, Education,

and Management Lab (StREAM Lab) to conduct this study.

The StREAM Lab is located along Stroubles Creek, a recently

restored third order stream in the Ridge and Valley physio-

graphic province in southwestern Virginia, U.S.A. (Fig. 1).

Until the restoration in 2009, the riparian area was used for

hay production and grazing. Since then, successional ripar-

ian vegetation has been established and depressional flood-

plain wetlands have emerged. The Stroubles Creek watershed

has an area of approximately 15 km2 and is comprised of

84% urban/residential landcover, 13% agriculture, and 3%

forest (Jin et al. 2013). Stroubles Creek reaches bankfull con-

ditions (� 2 m3/s) approximately three times per year, result-

ing in minor inundation of adjacent floodplain wetlands.

Further, depressional wetlands experience inundation peri-

odically from the surficial aquifer and upslope water flow-

paths. However, evapotranspiration limits soil saturation and

inundation of depressional wetlands during the growing sea-

son. Stroubles Creek is an ideal location for this study

because it contains multiple stream gages and is a third order

stream, making it unidentifiable in satellite imagery.

Hourly images of the southern portion of Stroubles Creek

(Fig. 1) were obtained from a NetCam XL network camera

(Fig. 2a). The camera was placed on top of a field tower at a

height of 10 m and positioned with an angle of 30� from the

horizontal (Fig. 2b). To minimize light reflection from the

sun, the camera was pointed southerly. The camera and a

Campbell CR1000 datalogger were powered using a deep

cycle marine battery (group size 27) augmented with solar

power from a BP 65-Watt solar panel. Images were taken

every hour on the hour, stored on the datalogger, and trans-

mitted to a server via a spread spectrum radio network. Real

Keys et al. Image processing of fluvial ecohydrology

2



time imagery, stream flow, and meteorological parameters

can be seen in real time at streamlab.bse.vt.edu.

Image processing

Once compiled within the database, digital images were

processed by a MATLAB script which can be found in the

supplementary material. Similar to Royem et al. (2012),

which used digital image processing to determine stream

stage at a single location, our MATLAB script was developed

to incorporate a variety of spatial metrics including flow

characteristics, floodplain saturation, and vegetation

dynamics. The MATLAB routine consists of three primary

Fig. 1. Site map illustrating the location of the camera, its viewshed, and the stream channel.

Fig. 2. (a) Close up view of the NetCam XL network digital camera, (b) site setup illustrating the tower and camera setup.
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steps: (1) image rectification, (2) region of interest (ROI)

selection, and (3) image analysis. In the first step, image

rectification converts the pixels within an image to corre-

spond to the ground footprint. Four known ground control

points (GCPs) are identified by the user within the image to

adjust to the selected scale. The GCPs correspond to sur-

veyed points on the ground that form a rectangle. Input

distances based on this known geometry are required to

adjust the image such that the rest of the image is con-

verted to the same scale. Knowing and defining the exact

location of GCPs is the most critical component of the

analysis. If GPCs are not correctly identified, the image will

not be correctly adjusted, resulting in inaccurate quantita-

tive measurements. After GCP selection, the image is

orthorectified to remove image distortion caused by the

oblique camera angle. During step 2, a graphical user inter-

face is used to select the appropriate ROI within the orthor-

ectified image. In step 3, image classification is performed

to delineate wet vs. dry pixels. The user identifies wet pixels

within the image and water bodies are identified by the

MATLAB script based on the user’s selection of wet pixels.

Image wetness analysis

The purpose of selecting classification points is to identify

pixels within the ROI that can reasonably be considered

“wet” areas. Based on the user identified points, a supervised

classification is performed so that all pixels within the image

that have reflectance values similar to the selected pixels will

be classified into different spectral classes. The entire image

is then converted to a binary matrix, where each pixel in the

image is assigned a value of zero (dry) or one (wet). Pixels

classified as wet are automatically summed up and displayed

in the output text file. To convert the pixel area to actual

area, the output pixel area must multiplied by the spatial

resolution of each image. Spatial resolution can be deter-

mined by measuring the actual area of the ROI and dividing

by the number of pixels corresponding to that area. An illus-

tration of the entire water segmentation process can be seen

in Fig. 3.

To further analyze flooding dynamics, our code locates

wet areas on the floodplain as well as their degree of wet-

ness. After the binary mask has separated wet pixels from

dry pixels, degree of wetness is determined by creating a

pixel-based color map. All wet pixels on the image are

assigned a value based on their similarity to the user’s

selected classification pixels, where wet pixels are assigned a

greater value than dry pixels. For example, the stream is

given the highest value as it has the closest values to the

classification points in every image. Values for large flood-

plain “hotspots” are assigned values that are less than the

Fig. 3. (a) Plain image selected by user, (b) image with identified ground control points, (c) orthorectified ROI, (d) classification points within ROI,

(e) enhanced image mask and (f) final processed image with binary mask.
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main channel but are still greater than dry pixels. This

clearly separates the stream channel from dry land while still

being able to identify floodplain hotspots. As illustrated in

Fig. 4, the stream channel and wet areas on the floodplain

are not only identified, but also separated based on their

degree of wetness.

Vegetation analysis

The final metric measured by our algorithm is floodplain

vegetation dynamics. To overcome the challenge of analyz-

ing vegetation dynamics without multispectral vegetation

indices, the Normalized Difference Red Green Index (NDRGI)

as calculated below (Eq. 1) was applied to all images.

NDRGI 5
qRed 2 qGreen

qRed 1 qGreen

(1)

The NDRGI measures vegetative greenness based on dif-

ference between the reflectance values of the red (qRed) and

green (qGreen) spectral bands on a scale from 0 to 1 with a

value of 0 corresponding to entirely green vegetation and a

value of 1 corresponding to completely dormant vegetation

(Yang et al. 2008; Stott et al. 2015). The index is highly

transferable as it can be derived from any camera which pro-

duces images in RGB color space. This includes almost all

forms of digital imagery, including satellite imagery. How-

ever, adjusting a camera’s color space settings could con-

strain or inhibit the calculation of the index. Unlike wetness

indices, calculation of NDRGI only depends on step 1 and

step 2 in the MATLAB script: image rectification and ROI

selection. Image classification has no impact on the calcu-

lated value of NDRGI because the calculations are based on

stored reflectance values from the pixels in the image. For

this study, weekly NDRGI values for an entire calendar year

were plotted to examine the seasonal variation in floodplain

vegetation dynamics (Fig. 5). The plot shows that NDRGI

values are highest during the winter months when vegeta-

tion is dormant and lowest during summer months when

vegetation is photosynthetically active. Corresponding

images of the floodplain during the different seasons are dis-

played as a form of visual verification.

Assessment

Proof-of-concept

To validate the ability of our code to evaluate inundated

surface area, we compared inundation area measured in cam-

era imagery with inundation estimates from a previously

developed inundation model. Described in Jones et al.

(2015), the inundation model utilizes a digital terrain model

of the floodplain and stage data measured at the site. The

terrain model was derived from a combination of high reso-

lution LiDAR and measured channel bathymetry, and devel-

oped using methods outlined by Merwade et al. (2008b).

LiDAR data was provided by the City of Blacksburg. Data

was collected in November of 2011, groundtruthed with a

root mean square error of 1 m horizontally and 18 cm

Fig. 4. (a) Image of Stroubles Creek and areas of wetness on the floodplain, (b) classified image showing the degree of inundation across the image.

The gradient in pixel color represents the degree of similarity between the given pixels and the user selected classification pixels, where dark red signi-
fies a high degree of similarity and dark blue signifies no similarity.

Fig. 5. Values of NDRGI for weekly images over the course of the 2012

calendar year. Representative images of floodplain vegetation are shown
above the corresponding growing seasons.
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vertically, and point spacing of 1.4 m. Channel bathymetry

data was measured using a real-time kinematic geographic

positioning system (RTK-GPS, Topcon GR-3). The resulting

digital elevation model has a 1 m by 1 m grid. Then, inunda-

tion was estimated using conditional raster analysis similar

to the method presented in Jones et al. (2008). The stage-

surface area relationship from the model is shown in Fig. 6.

For validation, individual images from 20 independent

2012 storm events were selected and analyzed. Image based

surface area estimations were matched with stream stage val-

ues measured at the same exact time via a pressure trans-

ducer in the thalweg of the stream. Corresponding modeled

surface area estimates were determined based on the stage-

surface area relationship. Results between methods were

then compared using a simple regression analysis. The coeffi-

cient of determination (R2), slope, and normalized root-

mean-square error (Eq. 2) were then calculated to determine

goodness of fit of the data.

NRMSE 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i51
ðŷ2yÞ

n

r

ymax2ymin

(2)

The NRMSE as shown above is a measure of residual var-

iance, where ŷ is the image based surface area estimations,

y is modeled surface area estimations, and ymax–ymin is the

range of the modeled surface area values. The regression

analysis between estimates from the two methodologies

(Fig. 7) resulted in a fairly linear relationship with a regres-

sion coefficient of determination (R2) value of 0.9417, a

slope of 1.0792, and a normalized root-mean-square error

(NRMSE) of 7.96%, suggesting a strong correlation between

the results. It should be noted that while there is a strong

correlation between the modeled and image based estima-

tions, modeled surface area predictions produced slightly

higher values than image based estimations. This can be

seen in Fig. 6 where the regression line is slightly greater

than the 1: 1 ratio line, with a slope of 1.0792. These results

are likely due to the visual obstruction of water created by

the riparian vegetation and stream banks.

Limitations

While this new methodology can be easily implemented

in a variety of environments, it should be noted that several

limitations on applicability exist. First, stream visibility is

limited during periods of low flow and high vegetation. The

result of this error can be seen in the larger amount of varia-

tion associated with estimated inundation surface areas dur-

ing periods of low flow in comparison with the relatively

accurate estimations during periods of high flow. In the field

of ecohydrology, high flows can be of greater interest than

low flows as higher flows signify periods of time in which

stream channels are hydrologically connected with their

adjacent floodplains.

Second, water droplets on the camera lens can greatly dis-

tort or obstruct the camera’s view during rain events or early

in the morning due to the accumulation of dew. During

storm events, water droplets can descend down the camera

lens, distorting the image if on the lens at the instant when

the image is taken. While this was generally not an issue in

the majority of our images, instances of heavy precipitation

did result in image distortion. During winter months, water

on the camera can freeze, resulting in ice on the camera

lens. This phenomenon generally occurs early in the morn-

ing when frost from the night before has accumulated on

the surface of the camera lens. However by midday, none of

the images were affected by ice on the camera lens.

Third, our system can only analyze images acquired during

the day due to the limited spectral range of the imagery. The

absence of nighttime data does not affect the ability to

Fig. 6. Relationship between stream stage and surface area resulting

from the inundation model. Circles represent the modeled surface area
at incremental stream stage values.

Fig. 7. Comparison between modeled surface area and image-based

estimations of surface area for 20 independent storm events. The dotted
line represents the 1 : 1 ratio while the solid line represents the linear

least squares regression line.
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analyze vegetation dynamics, which do not change overnight

but rather throughout seasons. However, flood events can

occur entirely during the course of a single night due to the

stochastic nature of flooding. Without nighttime data, it can

be challenging to fully understand the ecohydrology of a sys-

tem without other continuous variables (e.g., stream stage).

Data could be retrieved in the dark using a thermal or infra-

red camera. For example, infrared cameras have been used for

analyzing hillslope and riparian saturation dynamics (Pfister

et al. 2010) as well as wildlife habits (Claridge et al. 2005).

The fourth and final notable limitation with our code is

that it relies on user selection of GCPs, ROIs, and classifica-

tion points. As mentioned above, precise identification of

GCPs is the most crucial aspect of the analysis. Error associ-

ated with ROI selection should be relatively low as this step

is simply the selection of the analysis area in question. Clas-

sification point selection plays an important role in water

identification and quantification. While this does not affect

vegetation characteristic estimations which are calculated

solely based on RGB reflectance values, water separability is

greatly influenced by the selection of classification points.

Thus the degree of accuracy in water based calculations has

the potential for both random and systematic error based on

the user. For example, user error could be the result of acci-

dentally picking a dry area as a classification point or select-

ing a dry area that appears to be a wet. Despite its

limitations and potential for error, the methodology pro-

vides a relatively simple and accurate process for monitoring

surface water bodies.

Discussion

A great deal of research has been conducted on ecohydro-

logic dynamics of large surface water bodies and global eco-

hydrology (Jackson et al. 2009); nonetheless, very little

research has focused on the ecohydrology of local water

bodies (Janauer 2000), which play a vital role in the overall

context of ecohydrology. Furthermore, previous studies have

expressed the importance of analyzing ecohydrology across

scales with particular emphasis on the combination of large

scale remote sensing and modeling with small scale monitor-

ing (Janauer 2000; Asbjornsen et al. 2011). The methodology

described in this article presents a useful new approach for

monitoring and analysis of ecohydrology at multiple scales.

Additionally, the presented applications illustrate just several

of the many potential usages of our new methodology.

Digital imagery can be used for analyzing a variety of

environmental parameters and water bodies while allowing

for spatial monitoring and scaling of these variables. One

such example is forested water bodies such as streams and

wetlands. Forested streams and wetlands are extremely

important ecosystems which provide services such as water

quality improvement, flood control, and wildlife habitat

(Walbridge 1993). However, monitoring of forested systems

is a major challenge as canopy cover limits the ability of

freely available remote sensing to identify forested water

bodies (Ozesmi and Bauer 2002) and placing monitoring

equipment in remote areas can be problematic. Innovative

monitoring techniques such as our image processing

approach allow for spatial and temporal studies in isolated

regions without logistical issues such as transporting expen-

sive instruments to remote locations and the dangers of con-

sistent fieldwork in unsafe areas.

Urban streams would also benefit from this low cost mon-

itoring system as urban systems are constantly changing and

often unmonitored (Hughes and Yeakley 2014). Moreover,

urban stream management is generally focused on flood pre-

vention as opposed to maintaining natural flow regimes

(Zalewski and Wagner 2005). The sharp contrast between

low flows and sudden high flows generated from urban

storm runoff can have considerable effects on stream

channel-floodplain interactions and overall ecosystem

health. Challenges in urban systems such as water quality

degradation, habitat fragmentation, and bank erosion are

difficult to address due to a lack of monitoring and public

involvement (Hughes et al. 2014). Adding to these issues,

storm events are often unsafe to monitor firsthand and do

not get thoroughly analyzed as a result. Furthermore, large

floods can be difficult to monitor when fixed gauging sta-

tions are destroyed by high flows. These issues will be inten-

sified by rapid urbanization and increased flooding, and

thus, there is a great need for innovative monitoring techni-

ques to overcome these obstacles. Imagery can provide valu-

able information (e.g., flood extent and discharge) during

extreme events without being destroyed by the events them-

selves. Digital imagery approaches such as ours provide a

new manner of addressing these challenges presented by

urbanization.

The field of stream restoration has rapidly developed over

the previous 20 yr (Palmer et al. 2014) with a myriad of proj-

ects being undertaken across the U.S. (Bernhardt et al. 2005)

and in Europe (Ormerod 2004). However, a lack of monitor-

ing frameworks and post project monitoring funding has

limited the ability to address the successfulness of restora-

tion projects (Buchanan et al. 2014; Morandi et al. 2014).

Our methodology presents a new approach for monitoring

stream restoration for long periods of time following project

completion. Through digital imagery, one could observe a

variety of parameters such as changes in stream channel geo-

morphology, successional vegetation, and success of planted

trees. This idea diverges from the belief that large amounts

of money and resources are necessary to monitor long term

effects of stream restoration.

Crowdsourcing

The developed MATLAB code is robust enough that mini-

mal alterations of the code allow for it to be implemented in

a wide variety of environments. Furthermore, the code can
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be easily transferred to other programming languages or con-

verted into an executable, so that users do not need a MAT-

LAB license to use the script. Our code was developed this

way because one of the key concepts of this study is to

advance the idea of crowdsourcing and citizen science.

Crowdsourcing can be defined as the participation of the

general public in compiling data via the internet to be used

for the greater good of society (Estell�es-Arolas and Gonz�alez-

Ladr�on-de-Guevara 2012). Citizen science has become promi-

nent in environmental fields such as hydrology and ecology

as environmental protection requires active participation

from the general public (Buytaert et al. 2014). Despite its

simplicity and voluntary nature, crowdsourcing has been a

highly effective source of innovation in various environmen-

tal disciplines (Brabham 2013). The monitoring methodol-

ogy described in this article lends itself well to innovative

forms of crowdsourcing in multiple environmental fields.

While our study utilizes a field camera, contemporary cellu-

lar phone cameras can be almost equally as effective in

acquiring relatively high resolution digital images. With the

advancement of smartphones, geographically referenced or

geotagged images can be obtained via a smartphone camera

and sent to a database. This allows for a crowdsourced moni-

toring approach which can be implemented in practically

any location across the globe.

Comments and recommendations

The following guidelines are provided as a basis for future

studies or deployment. If performing a time-lapse analysis

such as the one in our study, it is essential that the camera to

be used can withstand environmental conditions such as pre-

cipitation and extreme temperatures. Depending on the

length and scope of the project, a variety of camera options

can be used. While our study used a high-tech camera, field

cameras such as a trail and game cameras are readily available

and relatively inexpensive (� $100). Similar to camera selec-

tion, camera placement should aid in optimizing the image

analysis for specific questions. For example, placing the cam-

era near the stream at a low elevation will provide coverage

across all flow regimes, whereas higher placement (e.g., a

tower) will provide greater spatial coverage. If at all possible,

the camera should be directed due North or due South to

avoid light interference from the sun’s East to West move-

ment. Positioning the camera in an area which is exposed to

sunlight is necessary in colder regions where ice could accu-

mulate on the camera lens. On the contrary, the camera

should be placed in a shaded area if the local climate is warm

and excess sun could potentially overheat the camera.

To use the methodology as a form of crowdsourcing, a

variety of image acquisition approaches can be used. For

example, images from cell phones could be taken from a

specified location or within a given region and sent to a

database. Alternatively, designated areas could be set up so

that images are taken at a precise monitoring location. This

would be ideal in areas with large numbers of tourists visit-

ing. For example, supraglacial streams in subarctic regions

such as Alaska receive a great number of annual tourists and

are also at the center of ecohydrology research due to drasti-

cally changing hydrology and nutrient fluxes (Hood and

Scott 2008; Blaen et al. 2014). Another example of potential

applicability exists in developing countries where cameras

are in abundance yet environmental data is scarce. For exam-

ple, Frommberger and Schmid (2013) implemented a disaster

reporting system based on crowdsourcing from smartphones

in Laos, a developing nation with very little publicly avail-

able environmental information. As the world continues to

develop and environmental issues become greater, the incor-

poration of crowdsourcing into the field of ecohydrology

will become increasingly more important.

The future of research in ecohydrology depends largely on

a paradigm shift from the complex, discipline specific

approach taken in research to a simplified yet holistic ecosys-

tem approach. Thus far, an interdisciplinary manner has only

been applied at a broad scale while neglecting local scale eco-

hydrology. The methodology described in this article presents

a breakthrough that bridges the gap between scales in the

field of ecohydrology. While not without limitations, our new

method provides a low-cost, user friendly, and widely applica-

ble ecohydrologic monitoring system. Ideally, future studies

will be able to improve on the methodology by reducing its

limitations and using it as a means of crowdsourcing.
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